ON T-SUM OF FUZZY NUMBERS* R.Fullér, Computer Center, L.Eötvös University, H-1502 Budapest 112, pf.157

We study the problem: if $\tilde{\mathbf{a}}_i$ i∈N are fuzzy numbers of triangular or exponential form, what is the membership function of the infinite sum $\tilde{\mathbf{a}}_1 + \tilde{\mathbf{a}}_2 + \dots$ (defined via a sup-t-norm convulution)?

Keywords: t-norm, extension principle, fuzzy variable DEFINITIONS.

A fuzzy number is a fuzzy set on the real line with a unimodal, upper semicontinuous and normalized membership function.

A function $T:[0,1]\times[0,1]\to[0,1]$ is said to to be triangular norm (t-norm for short)iff T is commutative associative, non-decreasing and T(x,1)=x, $x\in[0,1]$.

We shall use the following t-norms: $\min\{x,y\}$, xy, $\max\{x+y-1,0\}$ and $T_w(x,y)$, where $T_w(x,y)=x$ if y=1, $T_w(x,y)=y$ if x=1 and $T_w(x,y)=0$ otherwise.

Let T be a t-norm. If \tilde{a} and \tilde{b} are fuzzy numbers, then the membership function of their T-sum $\tilde{a}+\tilde{b}$ is defined as [1]

$$(\tilde{\mathbf{a}}+\tilde{\mathbf{b}})(z) = \sup_{\mathbf{x}+\mathbf{y}=z} T(\tilde{\mathbf{a}}(\mathbf{x}),\tilde{\mathbf{b}}(\mathbf{y})).$$

^{*}This work has been supported by Young Scholars' Fund under No.400-0113.

A symmetric triangular fuzzy number \tilde{a} denoted by (a,α) is defined as $\tilde{a}(t)=1-|a-t|/\alpha$ if $|a-t|\leq \alpha$ and $\tilde{a}(t)=0$ if $|a-t|>\alpha$, where $\alpha>0$ is the width and $a\in \mathbb{R}$ is the centre of \tilde{a} .

A symmetric exponential fuzzy number \tilde{a} denoted by $(a,\alpha)_e$ is defined as $\tilde{a}(t) = \exp(-|a-t|/\alpha)$, $\alpha>0$.

THEOREMS.

Theorem 1. Let T(x,y)=xy and $\tilde{a}_i=(a_i,\alpha)$, $i\in\mathbb{N}$. If $A:=\sum_{i=1}^{\infty}a_i$ exists and it is finite, then with the notation

$$\tilde{A}_n := \tilde{a}_1 + \ldots + \tilde{a}_n, n \in \mathbb{N},$$

we have

$$(\lim_{n\to\infty} \vec{A}_n)(z) = \exp(-|A-z|/\alpha), z \in \mathbb{R}.$$

Remark 1. This theorem can be interpreted as a central limit theorem for mutually T-related fuzzy variables \tilde{a}_i , $i \in \mathbb{N}$ (see [3]).

Theorem 2. Let T(x,y)=xy and $\tilde{b}_i=(b_i,\beta)_e$, $i\in\mathbb{N}$.If $B:=\sum_{i=1}^{\infty}b_i$ exists and it is finite, then with the notation

we have

$$(\lim_{n\to\infty} \vec{B}_n)(z) = \exp(-|B-z|/\beta), z \in \mathbb{R}.$$

Theorem 3. Let T(x,y)=xy and $\tilde{a}_i=(a_i,\alpha), i=1,2$. Then

$$(\vec{a}_1 + \vec{a}_2)(z) = \begin{cases} 1 - \frac{|a_1 + a_2 - z|}{\alpha_1 \vee \alpha_2} & \text{if } |a_1 + a_2 - z| \leq |\alpha_1 - \alpha_2|, \\ \frac{(\alpha_1 + \alpha_2)^2}{4\alpha_1 \alpha_2} \left[1 - \frac{|a_1 + a_2 - z|}{\alpha_1 + \alpha_2}\right]^2 & \text{otherwise,} \\ 0 & \text{if } |a_1 + a_2 - z| > \alpha_1 + \alpha_2, \end{cases}$$

where $\alpha_1 \vee \alpha_2 = \max \{\alpha_1, \alpha_2\}$. Let $\Theta_1 = \alpha_1 \vee \alpha_2$, $\Theta_2 = \alpha_1 \wedge \alpha_2$.

Theorem 4. Let T(x,y)=xy and $\tilde{a}_i=(a_i,\alpha_i)$, and let θ_i be the i-th greatest width, i=1,...,n. Then with the notations

$$\widetilde{\mathbf{A}}_{\mathbf{n}} : = \widetilde{\mathbf{a}}_1 + \dots + \widetilde{\mathbf{a}}_{\mathbf{n}}, \quad \mathbf{A}_{\mathbf{n}} : = \mathbf{a}_1 + \dots + \mathbf{a}_{\mathbf{n}}$$

we have

$$\widetilde{A}_{n}(z) = \begin{cases} 1 - \frac{|A_{n}-z|}{\theta_{1}} & \text{if } z \in M_{1} \\ \vdots & \vdots \\ \frac{(\theta_{1}+\dots\theta_{k})^{k}}{k} \left[1 - \frac{|A_{n}-z|}{\theta_{1}+\dots+\theta_{k}}\right]^{k} & \text{if } z \in M_{k} \\ k & \text{if } z \in M_{k} \\ \vdots & \vdots & \vdots \\ \frac{(\theta_{1}+\dots+\theta_{n})^{n}}{n & \text{if } z \in M_{n}} \cdot \left[1 - \frac{|A_{n}-z|}{\theta_{1}+\dots+\theta_{n}}\right]^{n} & \text{if } z \in M_{n} \end{cases}$$

where

$$\begin{split} & \mathsf{M}_1 \ = \ \{ \, z \in \mathbb{R} \, \colon \, | \, \mathsf{A}_n - z \, | \, \leq \Theta_1 - \Theta_2 \, \} \, , \\ & \mathsf{M}_2 \ = \ \{ \, z \in \mathbb{R} \, \colon \! \Theta_1 - \Theta_2 \, \leq \, | \, \mathsf{A}_n - z \, | \, \leq \, \Theta_1 + \Theta_2 - 2 \Theta_n \} \, , \\ & \cdots \\ & \mathsf{M}_k = \{ \, z \in \mathbb{R} \, \colon \! \Theta_1 + \ldots + \Theta_{k-1} - (k-1) \, \Theta_n \, \, \leq \, | \, \mathsf{A}_n - z \, | \, \leq \, \Theta_1 + \ldots + \Theta_k - k \Theta_n \} \, , \\ & \cdots \\ & \mathsf{M}_n = \{ \, z \in \mathbb{R} \, \colon \! \Theta_1 + \ldots + \Theta_{n-1} - (n-1) \, \Theta_n \, \, \leq \, | \, \mathsf{A}_n - z \, | \, \leq \, \Theta_1 + \ldots + \Theta_n \} \, , \end{split}$$

Remark 2. This theorem shows that if each \vec{a}_i has the same width $\alpha>0$, then the membership function of \vec{A}_n is the following

$$\widetilde{A}_{n}(z) = \begin{cases} \left(1 - \frac{|A_{n}-z|}{n\alpha}\right)^{n} & \text{if } |A_{n}-z| \leq n\alpha, \\ 0 & \text{otherwise,} \end{cases}$$

Theorem 5. Let $T(x,y)=T_w(x,y)$ and $a_i=(a_i,\alpha_i)$, $1 \le i \le n$. Then with the notations $\overline{A}_n=\overline{a}_1+\ldots+\overline{a}_n$ and $A_n=a_1+\ldots+a_n$ we have

$$\widetilde{A}_{n}(z) = \begin{cases}
1 - \frac{|A_{n}-z|}{\max \alpha_{i}} & \text{if } |A_{n}-z| \leq \max \alpha_{i}, \\
0 & \text{otherwise.}
\end{cases} (1)$$

Theorem 6 [4]. Let $T(x,y)=\max\{x+y-1,0\}$ and $a_i=(a_i,\alpha_i)$, $1 \le i \le n$. Then the fuzzy number $\tilde{a}_1 + \ldots + \tilde{a}_n$ has the membership function of (1).

Concluding remarks. Similar results can be obtained for the t-sum of non-symmetrical fuzzy numbers of triangular (or exponential) form by the help of their decomposition into non-decreasing and non-increasing parts (see [2]).

QUESTION.

Let T(x,y)=xy and let $\tilde{a}_i=(a_i,\alpha,\beta)$, $1\leq i\leq n$ be fuzzy numbers of LR-type. On what condition will the membership function of the "product"-sum $\tilde{A}_n:=\tilde{a}_1+\ldots\tilde{a}_n$ have the following form

$$\tilde{A}_{n}(z) = \begin{cases}
L^{n} \left(\frac{A_{n} - z}{n\alpha} \right) & \text{if } z \leq A_{n}, \\
R^{n} \left(\frac{z - A_{n}}{n\beta} \right) & \text{if } z \leq A_{n}.
\end{cases}$$

REFERENCES.

- [1] Dubois D. and Prade H., Additions of Interactive Fuzzy
 Numbers, IEEE Transactions on Automatic Control, 1981, Vol. 26,
 926-936.
- [2] Dubois D. and Prade H., Inverse Operations for Fuzzy Numbers, Proc. IFAC Symp. on Fuzzy Information, Knowledge, Representation and Decision Analysis, Marseille, 1983, 399-404.
- [3] Rao, M.B. and Rashed A., Some comments on fuzzy variables, Fuzzy Sets and Systems, 6(1981) 285-292.
- [4] Kovács M., On g-fuzzy linear systems, BUSEFAL, 1989, No. 37, 69-78.