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ABSTRACT
This paper put forward the concept of fuzzy singular
matrix and has a elementary discussion on its propertys.
Amd also gives two theorems by which the nonsingularity

of fuzzy matrix can be discriminated. It is a supplement
to one in the reference (1].
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1« BASIC CONCEPTS
Let's discuss the problems in semisimple ring I = (
(0,1), a+b = max{a,b}, axb = minfa,b}, for any a,b€(0,1} )

Definition 1.1. For any two fuzzy matrixes A = (aij)mxn
and B = (bij)mxn' A plus B is matrix (aij+bij)mxn' iege
: = +
4 * B = (a0, .00,y

Definition 1.2« For any a scalar X€(0,1] and any a

fuzzy matrix A = (aij)mxn’ K times A equals (K'aij)mxn’

i.e.

K.A (K.a, .)

1ij'mxn

Definition 1.3. For any two fuzzy matrix 4 = (aij)mxn
and B = (bij)AXt’ A multiplied by B equals matrix
n n
EPialng duxs? Fror 4B = (Zagbao)
Dafinition 1.4. Let H be the set of all 1xn order fuzzy
matrixes (fuzzy row vectors with n elements) and Bpesed s

A€H, if there are r numbers a1...ar6£0,1] which will make



the formula v
A =E'aiA i

hold true, A is said to be a linear combination of
the row matrixes (row vectoré) A1---Ar- Further, suppo-
se there be two grops of fuzzy row vectors A1...AdEH
and B1...BEEH, and let A be a vector set consisted of
row matrixes A1---Am aqd B be an other vector set con-
sisted of row matrixes B1"'Bk' The vector set A is
said to be a linear combination of the vector set B or
one can say that A may be linearly expressed through B,
if vectors of the A are all expressed as linear combina-

tions of the row matrixes B1"'Bk'

Definition 1.5. For any a mxn order fuzzy matrix A,
the set of linear combinations of all'row vectors of the
A is called the row space of A and expressed as R(A).

Definition 1.6. Let A be a mxn order fazzy matrix and
G be a set of the some vectors of the R(i), if the R(A)
may be linearly expressed through G, call the G a gene-
rating set of the R(a). Further, if removing any a vector
from the G, the set being consisted of tae remainers of

the G 1s no longer generating set of the R(4A), G is called
a minimal generating set of the R(A).

Definition 1.7, For any a mxn order fuzzy matrix A. row
rank of A is the vector numbers of minimal generating set
generating R(A), and expressed as FZAAJ- Similarily, we

may define column space C(A) and column rank %(A) of
matrix A.

Definition 1.8. For any mxn order fuzzy matrix A, we say
that A is having rank if Fr(A) = PC(A) = r, and then the
aqumber r is called rank of matrix A and expressed asf’Ox)-

Definition 1.). For any mxn order fuzzy matrix A, Schein
ralk of A is the miaimum number of the matrixes which have
rank 1 and are then added together making A.



Definition 1.10. For any two fuzzy non-vornishing vectors
X = (X1 ,xzcooxm) and Y = (y1 1y2000yn), the fuzzy matrix

(xi'yj)mxn is called a cross product multiplied X by Y and

expressed as (X,Y), i.e.

T

(X,Y) = X*eY = (x,.57.)

i"Yj’mxn

Thereby, K. H. Kim and Roush {6} pointed out the schein
rank fg(A) of fuzzy matrix A is namely the minimum number
of cross products, the sum of which is just the A.

2. FUZZY SINGULAR MATRIX

In the reference (1), a fuzzy non-singular matrix is
defined as follows :

{. mxn order fuzzy matrix A is said to be non-singular if
ﬁP‘A) = m and fz(A) = n.

lere we give another definition which is fully contrary
to the non-singular one in concepte.

Definition 2.1 For any mxn order fuzzy matrix A, A is
called fuzzy singular matrix if A is not non-singular.

For example, let

0.9 0.8 0.8 0.4
A =10.8 0.7 and B =06 0.3
0-6 005 004 002

then the matrix A is noa-singular, because f}(A) is 3 (

row numbers of A) and FL(A) = 2 (column numbers of A). whe-
reas B is siangcular, because F%(B) = 1 and FZ(B) 4 2 (column
aumbers of the B).

The reference (1) gives dicision theorems of fuzzy non-

singular matrix as follows

4 axn order fuzzy matrix A is non-singular if and only if :



Whole row and column of the A are-all linear independent ;

F(a) = P(a) =a) =n 3 A(A) = n.

As a futher supplement to the reference (1), we give follo-
wing two decision theorems.

Theorem 2.1« A nxn order fuzzy matrix A is non-singular if
and only if fuzzy relational non-deterministic equation of
the A '

A= Ynxtxtxn (2.1)

has not any solution as exponent t = n-1.

Proof. If equation (2.1) has no solution as exponent t = n-1,
we may pronounce that equation (2.1) will have the solution
as exponent t = n. Because

Ynxn = Anxn and
( ' 3
m?x (ai1} 0 oee 0
‘= 0 m?x{aiz} cee 0
nn . e M .
0 O s s e max{'a. }
\ 1 in nxn

i1s namely a set of solutions of the equation (2.1).

On the basis of the theorem 1.2 of the reference (2] and the
theorem 3.1 of the reference (3), we may know schein rank of
the A is equal to n, i.e. f%(A) = n, therefore the A is non-
singular.

On the contrary, if the A is non-singular, fg(A) = n. In
accordence with the theorem 3.1 of the reference (3}, the
fuzzy relational non-deterministic equation of the a4 (2.1)
has no solution as exponént t = n-1.

Thereby, we may abtain the following theorem on the moment.

Theorem 2.2 A mxn order fuzzy matrix A is singular if and
only if tne fuzzy relational non-deterministic equation of
A (2.1) nas just a solution as exponet t = n-1.



Theorem 2.3. If a nxn order fuzzy matrix A can be expressed
as sum of n cross products and the cross product numbers can
not be reduced again, the A is non-singular.

In fact, as the cross products are all like this fuzzy ma-
trix whose rank 1s one and the A can be expressed as sum of
n cross products and the numbers of the cross number can not

be reduced again, f;(A) = n. Therefore the A is a non-singular
fuzzy matrix.

Theorem 2.4. (i) If Amxn is a singular fuzzy matrix and

ank is a non-singular fuzzy matrix, AB is still a singular
fuzzy matrixe.

(2)e If Apyn 18 a singwlar fuzzy matrix and so is B sk’ AB
is a singular fuzzy matrix yet.

(3). If Apgn 18 @ non-singular fuzzy matrix and Bk 18 2

singular fuzzy matrix, AB is a singular fuzzy matrix.
Proof. (1) Because Apvn is a fuzzy singular matrix,
according to theorem 2.2, we may let : '

A= me(n—1)x(n—1)xn

The Y and X here are all fuzzy matrix. Whence, we have
formula like this :

AB = (me(n-1)x(n—1)xn)ank

= me(n—1)(x(n-1)annxk)(n—1)xk

It means that the fuzzy relational non-deterministic
equation of the AB has a set of solution at less as t = n-1.
In fact, the Ynx(n—1) and (XB)(n—1)xk is namely one of
them. Thus we may know that the matrix AB is a singular
matrix in accordence with the theorem 2.2.

On the basis of these same reasons, we may prove that conclu-
tion (2) and (3) are all true.

Let A be a nonzero fuzzy row vector (i.e. a = (a11. 8151 oo



8,p)) With m elements (m>1). Distingctly A,(A) = 1 and
f%(A)(m (column numbers). Therefore A is a singular fuzzy
matrix. Because of the same reason, a nonzero fuzzy column
vector is said to be a singular fuzzy matrix if and only
if its elements are more than one. Thus the theorem has
become like this : '

Theorem 2.5. Any non-zero fuzzy vectors whose element
numbers are more than one are all singular fuzzy matrixes.

Theorem 2.6. Suppose A is a mxn order fuzzy matrix if
the minimum elements of the A form some rows (or columns)
of the A, the A is a singular matrix.

Proof. For convenince, we may suppose that the minimum
elements form the first row of the A. Thus we may let
211)

: a2n

m2 LN N amn

in which a114%}?{ai,j}- Whence, the equal formular

(8.119 8.11, s e 311) = a11(a21oooa2n) + 0(331Ocoa3n) tooet

O(am1 oooamn)

hold truee. That is : the first row may be expressed as
linear combination of others of the A. From this, we
may know the unequal formula

f;(A) £ m-1

is true. Therefore the A is singular. Q.B.D.

The reference(5) introduces a concept of "successive
elimination”. From this, we have following definition,
too.



If the mininum elements of the A form some rows (or
columns) with same elements, the rows (or columns) are
called eliminated ones. And after eliminating them, the
fuzzy matrix consisting of the remainders of the A in
its original sequence is called fuzzy submatrix of the

Ae

For example, let

047 0.8 0¢2 0¢4 0.5)
0.3 0.3 0.2 0.3 0.3
0.1 0¢1 01 0¢1 0.1
0.7 049 0.2 0.4 0.5
06 0.6 0.2 0.4 0.5

0
]

Now we write off the rows and columns concerning of

the A

(0.7 008 D)

0:3000003000):2..00:3...0:3.

L . L] L
* L] [ ] L
L]

001000001000301.00001ooooo1o

. [ ]
. L
* L

0.7 0.9 0.2 0

4 0.5

2 0.4 0.5 )

step by step and can get the result like this :

3

bo 1 (2.2)

50060000060050320-00040.00-52

7 2 4 5

In the formula (2.2), the rows (or columns) connected
by a dotted line express ones writen off and the num-
bers marked out of the A indicate the sequence of suc-—

cessive elimination. Through this eliminative process,
the A becomes a submatrix

a, =[-8 finaly,
0.9



Thus the theorem 2.6 can also be expressed like this :

Theorem 2.7« For any mxn order fuzzy matrix A, if it
can be eliminated one row (or one column) at least
through "successive elimination", the A is a fuzzy sin-

gular matrixe.

For example, the fuzzy matrix A appering in the pre-
ceding example is namely a singular one.

Inference for any mxn order fuzzy matrix A only if
the elements of its some row (or column) are all zero,
the A is a fuzzy singular matrix.
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