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ABSTRACT, In this paper the definitions and their concepts
of grey topological space are introduced.And on
this basis, the relationship between grey topo-
logical spaces and fuzzy and genera( topological
space is discussed, There are also studies of grey
continuous mapping and compact grey topological
space,
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[. INTRODUCTION
C.L.Chang defined fuzzy topological space in [968.Mr
Wu Heqin and Wang Qingyin gave the conception and proper-
ties of grey sets We shall study the grey topological space
on this basis, :
Definition 1, Let X be a discussible fietd, If upper and
lower subordinate functions of grey subset A in X are all
equal to [, or DA(XF}JA(X):I,VXEX, then A is calted
the whole grey set in X, usually written X,
I[f upper and lower subordinate functions of grey subset
A in X are all equal to (, or DA(X)ILJA(X):O.\'/XEX.
Then A is called empty grey set in X, usually written J,
Definition 2, Let X be a discussibte field. The grey subset

in X N 7\ , X:a 3
M x)= where N\ #14,
0, X#Q&



A, x=0

Mx)= {O X 20 where A #g.

These are called the grey point of x,written(XAor

simptified AKAto (&

Definition 3, Let A B be grey subsets of X If nin[HA(a),'

Jg(03]1>0, then A and B are called the joint te pointq.

Definition 4, Let A,B be grey subsets of X If MA@

*g(l>1, then A and B coincide in point( .A and B are

called coincide if and onty if there exists Q€ X such

that A and B coincide to ( .

Definition 5, Let A be a grey subset of X,(\Rbe a grey

point of X.

() If 0<Z_\\<K<\:LJ_A((1), then (lxAis called belong to A,
usually written QRA€ A,

) If )‘3+LJ_A((1)>1, then(JxAis called coincide to A,
usually writtenORAA.

Definition 6, Let f be a mapping from set X to Y,B is a

grey subset in Y and subordinate functions of B are I__JB(y),

Mg(y),y€Y. By the inverse image of B(written ' [B])

we mean ¢rey subset in X and its subordinate functions are

defined by, Uf'tB(X)_UB(f(X))' vxeX,

}_Jf_;(m(x)zga(f(x)). vXx€EX,

Let A be a grey subset in X and subordinate functions
of A are JJa(X), MaCX), x€X. By the image of A(written
f[A] ), we mean grey subset in Y and its subordinate func-
tions are defined by, wye€Y

sup( JpCx)) -z ¢
Ef[A)(y)_ {xef )

0 tley= g

sup{ [Up (X))} f"(y)?i )

L= {EF®
0 rlap=g



where f'l(y)=(x|f(x):y},

Theorem | Let f be a mapping from set X to Y, B is a grey

subset in X, then 1) f* [B¢]=cf! (B>

(2) If f is a surjetion, then f([f ' [B]]=B.

(3) And g is a mapping from Y to set Z, then there exists

any grey subset C of Z, (gef) ! [C]=f"' [¢"} [C]],

where gof is the compound mapping of f and g,

Proof, (1) Since Upygex)=lgeC f(x))=1-YJgf(x))
:l—uf“[B)(X)—D(f“(B]f(")’ vx€X,
Mygey 0= gec fex)=1-0g (fx))= I—Mm](x)

“/U(f"(B (x), Vxe€X.
Hence % (Bc) cf! [B])C.

(2) Since f is a surjetion,hence f‘l(y)i 0.

Thus [J y)= su x))= sup { JoC(f(x))}=Tg(y),
Fpas S 28, Pego)s sur (g g

¥)= sup { (x)}= sup { JpCfCx))I=lUaly).
SO Letg) xe £y =S =87
So f[f* [B]]=B.
(3) For wx€), }Jw,ﬁtc)(x)-uc [Cge Y] =T [g [£Cx)1]
‘/US‘(C][“U —}Jﬁﬁq}(x)
Kot xr=Ke [(ge DH =  [g [f(x] ]

=Lty 1001 =Lgtgie 0.
Hence (gef) ! [C]=1"" [¢~* [C]].

I CONCEPTION OF GREY TOPOLOGICAL SPACE
Definiton 7, If grey subset family 9 in X satisfies,

(H X, 0€7,

(2) If A, B€7), then ANB€T,

(3) If AtCte T €7, then%TAtej ]

ThenJJ is called a grey topology, and (x,7]) is called a
grey topological space The elements A inZare called grey

open sets and At are called grey closed sets,

where /UAC =1-a> U :I—HA.



Definition 8, Let (x,9) be a grey topological space,
(Oxpis a grey point and A is a grey subset in x If there
exists a grey subset B€7],such that0m€ BSA, then A is
called neighbourhood of Qza. [f there exists a grey subset
B€) such thatJJAABESA, then A is catled a coincidence
fietd of Oy
We usef[gmto express all neighbourhood trainCor coin-
cidence field train) composed of all neighbourhoodCor coin-
cidence fietd) of URA.
If AEQ(anls a open set, then A is calied open neighbour-
hood(or open coincidence field),
Theorem 2. Let (x,fJ) be a grey topological space, then
neighbourhood train(or coincide field train) of the grey
point (X in X has the following properties,
(D Yp#b.
(2) If AeQ)g, then(] €A,
(3) If A,BEQ|qn, then ANB€Zy.
(4) If BE|y,and the grey subset A2B, then A€ 2.
(5) If A€4ly, then there exists B€4j; such that A€Zp
for atl b €8B,
proof, We only prove neighbourhood,
(1) It’s obvious,x€4fy, hencedy #§.
n If AE%, then there exists B€% such that
Q€B<A, Hence (l €A,
(3) If A,B€4/q, then there exists A;,B, €7 such that
Q€ AcA and Q€ BB, hence there exists A, MNB, €7) such that
0EANBI2ANB, so ANBEq),..
(4) If B€q[g, then there exists By €J such thatQ€ BiE B,
hence A € Bjc BSA, so A€ 2.
(5) If A€Q)y, then there exists A, €7 such that X € ASA.
Let B=A;, since A; €7 andQ€ A, , hence BE%.
Since any b€B,B€T, then B€ 9.



From BSA and (4) we have A€q,
Definition 9.Let (x,2) be a grey topological space,
(1) U(BIBET,0€B<sA) is called the interior of A, usually
0€A written X |
(2) N{CIC is a grey closed set, Q0 €ASC) is calld the
Q€A ¢ \osure of A, usualy written A,
(3) AN¢AS is called the grey frontier of A, usuallty
written b(A),
Theorem 3 ({) & is the largest grey open set contained in A,
(2) A is the sma(lest grey closed set containing A,
(3) A2AUbA).
Proof, We prove (3) onty.
[f we want to prove A2A( bcA) only need to prove
LRG> Uauhia) (X)X EX.
Haubay(x)=max{ {5 (), TyaCx) )=max{ T cx0, Uxnqecx)
=max{|JA(x), min [Ux(x), JHgex])
=max{ [Jp (x), nin [JxCx), 1-UE (0] ).
Since A24, so }__i;;(x)}}JA(x), Vv x€X.
Since A and A coincide to X, wxe X
Hence i_JK(:{)ﬂ_J_R(x)H(VXGX)*gﬂ(x)ﬂ—gﬂ(m (vxeX),
S0 R OaghaX)s VX €X,
But usually AUbCAY2A can’t hotd,
Theorem 4 Let(x,7]) be a grey topological space.The grey
subset A is the open set if and only if A=A,
Theorem 5 Let(x,7)) be a grey topological space If the
grey point (€ A, then every coincide field of OxA coincide
to A alt.
Proof, Om€ A — any grey closed sets B=2A, there is atways
AR€B. e Ugla)>X > A >,
— any grey open sets CSAS, always holding,ﬂc(a)<l~2_\,
—any grey open sets C satisfies ﬂc(ap[-A didn’t contain
in AC .



— any grey open sets C satisfies JJc(a)>|-Adidn’t contain
in A _so C and (AC) -A,
— any grey open coincide fietd C of ORalways coincide
with A,
— every coincide field of(\fAcoincide with A,
ITI.RELATIONSHIP BETWEEN GREY TOPOLOGICAL SPACE AND

FUZZY AND GENERAL TOPOLOGICAL SPACE
I.Let(x,J) be a grey topological space.If the upper and
lower subordinate functions of the grey set A in X are equal,
or;JA,___A,then change the grey set A in X into the fuzzy
set. Hence changeZJinto the fuzzy topology and change(X,J)
into the fuzzy topological space.
2.Let(X,J) be a fuzzy topological space, [f subordinate
functions of the fuzzy set A JMAE {0, 1}, then change A into
the cantor set in X.Hence changeZ into the general topology
and change(X,J) into the general topological space,

Hence general topological space is a particular example
of fuzzy topalogical space,Fuzzy topological space is a
particular example of grey topotlogical space,

So grey topological space 2fuzzy topologcal space =2
general topological space,

[V COMPACT GREY TOPOLOGICAL SPACE

Definition 10 The grey sets family {(At|t€T) is called
the cover of the grey set B if and if Bi}JAt If At are
all grey open set, this is called open cover.If some sub-
family is stitl covered, then this is called subcover,
Definition 11 The grey topotogical space(X,7)) is called
compact if and only if every open cover has finite subcover,
Definition {2 The mapping from the grey topological space
(X1, 1) to the grey topological space(X2,&:) is called
grey continuation if and onty if wBeJ—~f"[B] €7, .
Theorem 6 The composition mapping of two mappings is also



a grey continuous mapping.
Proof, Let grey continuous mapping f,(X,,J)—Xz,7),
g: (X2, J2)—(X3,7;) (the grey topological space),
If wCET,, then (gof) [C]=f"[g™[C]].
Since ¢ is a grey continuous mapping, hence g~'[C] €2 .
Since f is a grey continuous mapping, hence f7[¢7[C]] €3,.
So (gef)"[C] €3,.
Hence gof is a grey continuous mapping,
Theorem 7 Let f be a grey continuous surjetion from the grey
topological space (X,,7),) to the grey topological space
(X2, J2). If(Xy,T)) is compact, then (X;,J.) is compact too,
Proof, Let {Btit€T) be a open cover of Xa.
Since for any a € X there always holds,
)Ju#‘tab](a) sq!ppmﬂ(a) s“.FuB‘c(f(a”‘UU (fca)).
Since L%pﬁaxz—+}Ju v (f(a))> [y, (fCa)=[.
Hence /Qé’,lﬁt(f Cay1. Thus %Bﬂ(a) .
Hence Ly f(Btj(a)>Ux(a) o f[Bt1=X,.

So {f+[Bt]|t€T} is a cover of Xi.
Also f[Bt]C(t€T) is a grey open set,Cactually Bt is a grey
open set,f is a grey continuous mapping.So f[Bt](t€T) is
a grey open set too),

Hence{f’WBt]ltE‘r}is a open cover of X;.SincecX;,Jp
is compact,so it has finite subcover{f™[Bt)]k=1,2,...,n}).
Also, f is a surjetion, then for any grey subset B of X,,
there always hotds f([f7[B]]=B.Hence{Btylk=1,2,...,n} is
a cover of X;.S0 (X2,J.) is compact,
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