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In this paper the separability,completeness,subgroups and ..
quotient groups of induced fuzzy topological groups are di-
sscussed.

5

Keywords: Fuzzy topological groups,Induced fuzzy topolo-

gical groups, 3eparability,Completeness.

1. Om the spaces of induced fuzzy topological groups

Let A be a fuzzy set in X with membership function‘pA(Xl
For any re(0,1, Ar={x l pA(x) >r} denotes the strong r-cut
arid r* denotes the fuzzy set in X with membership function
urix)=r for all xeX.

. Proposition 1.1. Let (X,T) be an ordinary topological
group and F(T)= {A lA—a fuzzy set in X ard for all re[o,1),
AreT} . Then (X,F(T) ) is a fuzzy topological group.#e call
it induced fuzzy topological group on (X,I). ‘

Proof. [t is clear that (X,F(T)) is a fuzzy topological
space. Hence the only thing which remains to be,proved isg
that the operations which X possessed are fuzzy continuous

relative to the fuzzy topology F(T).

(i) For all a,b €X and any open Q-neighboohood W' of



(ab), ,since );nw,(ab) >1- Awe can choose a re(0,1] such that
1=a<r< w'(ab). Then W= W'y is an open neighborhood of (ab)
in (X,T). Hemcé im (X,T) there are open neighborhoods U of

a annd V of b such that UVaW,

Putting U'sUnr* and V'=Vvar*. Now in (X,F(T)), U' and V'
are Q@-neighborhoods of a, and b, respectively and it is easy
to check that U'V'<c W',

(ii) For any a € X and any oper Q-neighborhood V' of a,
quite similarly we can find a Q-neighborhood U' of ansuch

that U lev? y, this completed the proof.

Defimitiom 1.1. Let (X,J) be a fuzzy topological group

We say it belongs to type (QL) iff there exist a family of
fuzzy sets « = {U} in X such that for any A€(0,1) and any
decreasing sequence {r.i} ywhere 1-’\<Ij_$1 and L—-1-a,

U= {Ung* | Ue % }is a G-neighborhood base of e, .We
call the family @ a model of base of the fuzzy topological
group (X,J).

Fropositiom 1.2. Any induced fuzzy topological group
{(X,F(T)) on an ordinary topological group (X,T) belongs to
type (QL).

Propositon 1.3. If a fuzzy topological group (X,J) belongs
to type (QL) and @« ={U} is a neighborhood base of e . Then
9 is a model of base of (X,J).

Proof. It is similar to the proof of Theosrem 1.2 in [5] .

Froposition 1.4. Let (4,r(T)) be a induced fuzzy topolo-
gical group on an ordinary topological gzroup (X,T). (X,¢(T))

(3]

is @=C4 "if and only if (X,T) is C1 .



Proposition 1.5. Let (X,J) be a fuzzy topological group
which belongs to type (QL). Then the space of (X,J) is Ha-
usdorff if it is T,

Definition 1.2. A fuzzy topological Space (X,J) is said
to be Q-regular iff for any fuzzy point X, and any open Q--
neighborhood U' Of x, there exists an open set V' such that
xqV'cU' .

Propositiom 1.6. The space of a induced fuzzy topological
group (X,F(T)) is Q-regular.

Froof. To prove this proposition it is enough to verify
that for any Ae(0,1) and any open Q-neighborhood U' of e,
there exists a V'€ F(T) such that e, qV'cU"' .

Let % ={U)} be an open neighborhood base of e in (X,T).
Then %, = {(U/\Ef) =U' | Ue @, ri=min(1,1- +€-)} is a @--
neighborhood base of e, im (X,F(T)). For any U'=(U/1r;)€<ﬂ“
since (X,F(T)) is a fuzzy topological group we canm find a
7'=(Vnry) such that vV eyt .|

Suppose that x, € V'=(VAT¥) . Then by the Theorem 4.1
in (3] there exists a fuzzy net S' in V' ywhich converges
to x, . Hemce u<r . Furthermore we can find a lzrg>
max( u,1- u) such that x(VAr*) is a Q-neighborhood of x, .
Then x(VAr*) is quasi-coincident with (Vn r*) at a point
v € X. Namely

. (y)+ u >1
}J(\Mn*) y J{(\,/”?*)(sz)
Hence yp. ¢ (VAag*) and (x4y)§ € (/nar%). Putting r=min (
- -1
5, ). Now §ﬁ=%,(x* yzf € (Var*)(Var*) = U'., This im-
plies that X, € U' and then VeU'. The proof thus is comp-

leted.



Proposition 1.7. Let (X,F(T)) be an induced fuzzy topo-
logical group om (X,T) and H be an ordinary subgroup of X .
Then the coset space (X/H,J*) (4] of (X,F(T)) relative to H
is regular. |

Definition 1.3, A fuzzy net S'= {x:: yneD} in a fuzzy
topological group (X,J) is called a a-Cauchy net iff for any
Q-neighborhood W' of e, we can find a me D such that for any
n ,n'zm ,x:i(x"qu, is quasi-coincident with w' .

Propositiom 1.8. A fuzzy net S'= {xxx, n€D} in an indu-
ced fuzzy topological group (X,F(T)) is a A =-Cauchy net iff
the following conditions are satisfied

(:.) The ordinary net 3= { X , neD} in (X,I) is a Cau-
chy met.

(1) For amy 0<e<i there is a meD such that for any
n >m there holds Am > A—¢

Defimitiom 1.4. A fuzzy set A' in a fuzzy topological
group (X,J) is said to be fuzzy complete iff any A-Cauchy
net in A' converges to a fuzzy point inm A' .

‘Proposition 1.9. Let (X,F(T)) be the induced fuzzy topo-
logical group om (X,T). Then (X,F(T)) is fuzzy complete if

and only if (X,T) is complete .

2. On the subgroups and quotient groups of an induced
fuzzy topological group

Froposition 2.1. Let (X,F(I)) be the induced fuzzy topo-
logical group on (X,T), N be an ordimary subgroup of X and

Ty be the relative topology of T on N and Jy be the relative



fuzzy topology of J om N (where J=F(T)). Then the induced
fuzzy topology F(TY on (N,T) and J are equivalent.
Proof. 3uppose ‘that « ={U} is an open neighborhood base
of e im (X,T) and Ae(0,1) . Then by Proposition 1.2,
U={U'sUnr* | Ue @ ,q_=mim(1,1-x+%—)} is an open
Q-neighhorhood base of e, in (X,J). Now it is easy seen that
w={u'nN|U' e a } is an open Q-meighborhood base of e,
in (N,Jy ).

On the other hand since u ={UnNN|U€ a } is a neigh-
borhood base of e in (N,Ty), it follows from Proposition 1.2,
@k = {(U(\N)n g* | Ue @ %-=min(1,1-a+€f) } is an open

@-neighborhood base of e, im (N,F(T)). Compareing a with
mﬁ we can easily obtain the assertion of the proposition.
Proposition 2.2. Let (X,J) be an induced fuzzy topological
group on (X,T) and N be an ordinary normal subgroup of X .
Let (X/N,T*) be the quotient group of (X,T) relative to N
and (X/N,J*) be the fuzzy quotient group of (X,J) relative
to N. Then the imduced fuzzy topology F(T*) on (X/N;T*) and

J* are equivalent.
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