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Reccently, the initial theory of fuzzy syntopogenous structures was established by
A K Katsaras. In this paper, another structure—fuzzy. syntopogenous g—family is de-
fined, it is studied that thc relationship betwcen fuzzy syntopogenous structrues and
fuzzy syntopogenous g—families. Particularly, if g(Iy)is dense in L—fuzzy
syntopogenous space (Y,S,),then Hg= {G( ,: <« ;€ S,} is an L-fuzzy
syntopogenous g—family. Converscly, if H is an. L—fuzzy g—family, then
Sug=1{«,;:GeH} and S,=1{ &, GeH} are  respectively  L—fuzzy
syntopogenous structures on Y and on X.Finally, it is discussed that fuzzy local
syntopogenous structures and the image of fuzzy syntopogenous structures.
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1. Introduction

A.Csaszar [1] gave the concept of syntopogenous structurcs for the unified theory
of topology, proximity and uniformity.A.K.Katsaras and C.G.Petalas[2,3,4] intro-
duced the fuzzy syntopogenous structures and studied the unified theory of fuzzy
topology, fuzzy proximity and fuzzy uniformity and obtained some similar properties.
In this paper, another structurc—fuzzy syntopogenous g—family is defined, it is stud-
icd that the rclationship ybetwecn fuzzy syntopogenous structures and fuzzy
syntopogenous g—familics. Also it is discussed that fuzzy local syntopogenous struc-
tures and the image of fuzzy syntopogcnous structures.
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2. Preliminarics

In this paper, L= <L,<,A,V,’ > always dcnotcs a completely distributive lattice
with order—reversing involution ”,”(i.c. fuzzy lattice). Let o be the least clement and 1
be the greatest one in L.Suppose X is a nonempty(usual) set, an L—fuzzy set in X is a
map A: X—»L and LXwill dcnote the family of all L—fuzzy sets in X.It is clear that }L

=<L” <, A\,V," >is a fuzzy lattice, which has the least element Oxand the great-
est one 1y, where O (x) = 0,1 (%)= 1for any x€X.

The following pnmcxpal dcﬁmtlons and lemmas about fuzzy syntopogenous struc-
tures are similar to [2,3,4], they can be expanded to function domain L.

Definition2,1. A binary relation €on LXis called an L—fuzzy semitopogenous Or-
der if it satisfies the following axioms:

1) o, €0 ,andl €,
= (2) A B implies A<B;

(3) A,<A ¢B<B,implies A, €B,.

The complement of an L-fuzzy semi-topogenous order is the L—fuzzy
semi—topogenous order {‘which is defined by A °Biff B KA.

An L—fuzzy semi—topogenous order is called:

(a) symmetrical if = <5

(b) topogenous if A, €B,and A, «B, imply A;V A, B VB, and A|AA,; KBIA
B,;

(c) Perfectif 4, (B .jeJ, lmplxes\/A ((VB,,

(d) biperfect if A ((B /,]GJ implies \/A «VB, and N4, «N\B,.

Definition 2.2. an L—fuzzy syntopogcnous structure on X isa nonempty set S of
L—fuzzy topogenous orders on X having the following properties: (LFS,) S is directed
in the sense that given any two members &, «,of S there exists €in S finer than both
¢and &, ie.VABELXA ¢ Blor A &,B) implics A «B; (LFS,) Foreach (in 3 there
exists ¢ ,in S such that A € B implics the existcnce of an L—fuzzy set D with
4, £ D «, B. The pair (X,S) is called an L—fuzzy syntopogenous space.

Lemma 2.1. Let S be an L—fuzzy syntopogenous structure on X, then the map-
ping A—~A%=V {B:B «A, for some €S} isan intcrior operator and so it defines
an L—fuzzy topology T (S).If € = {J «then 4T (S)ff 4 ((PA Conversely, for

&S
every L—fuzzy topology on X there exists a perfect L—fuzzy syntopogenous structuyo
§T)= { «} ,wherc A «Biff there exists D€ T with ASD<CB.
Proof.sce [2].
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3. L-fuzzy g—mappings and L—fuzzy semi—topogenous orders

Let us consider two nonempty usual sets X,Y and a single valued mapping X Y
(X,Y and g will be fixed throughout the whole paper)

Definition 3.1. A mapping G: LTl = {K:cL ¥\ is called an L—fuzzy g-map-
ping if it satisfies the following axioms:

(FMO) G(A)#®, and F>E € G(A) implies F € G(A).

(FM1) Ox € G(A) iff A=Oy.

(FM2) E € G(A) implies g (A)<E.

(FM3) A<B implies G(B) = G(A).

G will be said to be topogenous. Further, if for any E,F €1% and A,BE LY, E€ G(A),
F € G(B) implies EAF € G(AAB), EVFE G(AVB).

Let G(X,Y) denote the set of all L-fuzzy g-mappings G defined on LYinto L(X). A
partial ordering“<=” on G(X,Y) can be defined as follow

G,,G,€G(X,Y),G, =G,iff G (4) = G (4),for any AELY.

{G del} G, 1), (UG YA) = UG (NG YA = NG, (4).

It is easy that G(X,Y) is a complete lattice to the partial ordering “ =” with the great

element G,and the least element G, where G (4) = {B:A < B,BeL ¥y forany A€ LQ“
Go,)=L ,GO(A)= {lx} ford #0 ,

Definiton 3.2. Let «be an L—fuzzy semi~topogenous order [2, wecallX , = X (

—dense,if VL — fuzzypoint x AeLx,u,v eLx,u {v,and x‘L—quasie—cqincident u, then v
A1xeFO0xqo-

Theorem 3.1. If «is an L—fuzzy semi—topogenous order on Y such that g(ly) is
«—dense, then the definition G  (4) = {EeLx:A «[g(ENY} yields an L—fuzzy g—map-
ping G (which will be called the g~mapping induced from {. Further if { is topogenous,
then G (is topogenous, too.

Before the proof of theorem 3.1, we give a lemma to explain theorem 3.1,

Lemma 3.2. Under the condition of theorem 3.1 E€ G ((A) iff there exists Eo€ L¥such
that A €Egand g '(E))<E.

Proof. if E€ G ((A), choose E,=[g(E")), then A (E,, g @E =" EN =
E” = E.Conversely, if there exists Eg€ LY, g™(E))<E, A {Eg,then E'c [g7'(Ey)Y. and g(E)
cg(lg” (EpY) = Ey,further more Eq<= [g(ENY, A K[2(ENY, E€ G ((A).

Proof of thcorem 3.1 Let us consider the system of axioms defining an L—fuzzy
scmi—topogenous order (sce def 2.1), and prove the validity of (FMO)—(FM3).

(FMO): A «[g(1’0)Y, thus 1€ G ((A). IfEcF and E€ G ((A), then by lemma 3.2 F €
G (A).

(FM1): Oy € Oyimplics Ox€ G (Oy). Conversely, Ox€ G ¢ (A) implies A
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«[2[0’5)Y = [g(1Y, simee g(1x) is nonempty usual setin Y, a usual point x, € [g(1,)) and
A(x)70, it is casy that x, quasi—coincident A,as [g(1 YA g(1x) = Oy, but this contradicts
the density of g(1x), s0 A=0Oy.

(FM2) If E€ G ((A) by lemma 3.2 there exists Ey such that A {Eqand g (E)<E, so
g (A)<E.

(FM3) If AcB, E€ G ¢ (B), then BK [g(E)) and A & [g(EY)Y, so E€ G (A).
Topogenousity is omitted.

Further we shall consider an L—fuzzy semi~topogenous order on Y for any L—fuzzy
g-mapping G. :

Theorem 3.3. Let G be an L—fuzzy g-mapping, then an L—fuzzy semitopogenous Or-
der «,g can be defined on Y by the following formula:

A «,gBiff AcBand g"'(B)€ G(A).

Further, if G is topogenous, then sis also topogenous.

Proof: Because of g~'(Oy) = Ox, 1x € G(ly) and Ox € G(Oy), 1x=g'(1y) € G(1y), then |

Oy £160ys 1y €,6ly- If A €GB, by the definition, we have AcB,ilfA,cA {,cBcB,, ob-
viously A, =B,and g™(B)€ G(A) implies g'(B)>g"'(B)E G(A)=G(A)), hence g'BpE
G(A), A, gB,. By definiton2.1 € gis an L—-fuzzy semi—topogenous order.
Topogenousity is omitted.

The L—fuzzy semi—~topogenous order & ,gwas defined on Y.In another way one can
determine an L—fuzzy semi—topogenous order {,gon X for an arbitrary L—fuzzy g—map-
ping G.

Theorem 3.4. If G is an L—fuzzy g—mapping, we have an L—fuzzy semi—topogenous
order «,gon X given by the following definition: A €,gBiff B € G(g(A)). Further, if G is
topogenous, then &,gis also topogenous.

Proof: Oy €,60xand lx €yglxare obvious. If A €6B, then B € G(g(A)), therefore by
(EM2) A = g"(g(A)) = B. Finally suppose Ac A, €,6B,=B. Then B2 B, € G(g(A)), 2(A)
=g(A,), consequently because of (FMO) and (FM3) BE G(g(A)), that is A €,gB holds.
Topogenousity is omitted.

4. Fuzzy syntopogenous g—families and Fuzzy syntopogenous structures

Proposition 4.1. If €, and «, are L—fuzzy semi—topogenous orders on Y, g(1y) is

€,—dense, and ;< &, then g(1x) is also «,~dcnse,and G, < G, > conversely, if G,and
2

1

G,are L—fuzzy g-mappings and G, = Gy, then e < €,z and e = € -
H 2 t 2

The proof is straight forward and hencc omitted.

Theorem 4.2. Let G be an L—fuzzy g—mapping, wec have an L—fuzzy g—-mapping de-
noted by Gfor which E€ G¥(A) ilT there exists F € G(A) such that E€ G(g(F)). G'=G,
and it has the propcrtics listed below: .
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(1). If «is an L—fuzzy semi—topogenous ordcr on Y, and g(1x) is «—dense, then
G 2<cG

(2). If g is injective and G is topogenous, then (. = { :G .

(). €,z = &, always holds.

Proof: G> = G is true, because E st(A) implics the existence of an L—fuzzy set
F€ G(A) such that E€ G(g(F)), and by (FM2) Eog™(g(F))>F € G(A), thus in view

of (FMO) E€ G(A). G* is an L—fuzzy g~mappping. (FMO):1 xer(A), since 1
€G(4) and 1,&G(g(1,)). If FSEE G¥(A) then for a suitable £, € G(4),wehave F
> EeG(g(F ) thercfore FeG ' (4). (FM1): 0,€G(0 ,) and0 , G(g(0 ), thus O .

'€G(0,). Conversely, if 0,€G*(4), and FeG(4) such that 0 ,€G(g(F)), thus F

cg _,(g(F)) cO,and F= 0,,504=0 , (FM2): EEGZ(A)implies that there exists
F€ G(A) such that E€ G(g(F)), thus g ~'(4) = Fc g ~'(g(F)) < E, then g W) eE.
(FM3): E€ GX(B), and A < B imply that there exists F such that F€ G(B)= G(A) and E
€ G(g(F)) then E € G¥XA).

(1). EeG é (A) iff A € }g(EDY iff there exists C such that A ¢ ,C « [2(EYY.

Choose F=g™(C),then g(F)= g8 C) < C.g(F) [g(E",ie.EecG " (g(F)),as C
<lg(g " (CNI. So 4 & [g(FY, ie. FeG . ()Thus EeG’ (4).

(2).4 ((wz Biff 4 cB,g-l(B)er(A)iff A cB, there exists F€ G(A) such that

g '(B) € G(g(F)). Choose C=AV g(F), then A=C, g (C)=g(A)V g (g(F)), as g is
injective, so g™'(g(F))=F, but g"\(B)€ G¥(A), we have g '(B)€ G(A), and g (C)€
G(A), g7(A)c=F.Also g'(B)€ G(g(F)) implies Fcg™'(g(F))<g™'(B) and Cc<B.Be-
cause G is topogenous, g"(B) € G(AVg(F))=G(C). Thus A €1cC & GBiffA ((fGB.

(3). 4 ;2 B iff BE G*(g(A)) iff there exists F € G(g(A)) such that BE G(g(F)),
ie. A & 6F «,gB.

Definition 4.1. A family C of L—fuzzy topogenous g~mappings will be called an
L—fuzzy syntopogenous g—family, if the following conditions are fulfilled:

(FC,) Forany G|, G, € C there exists G € C such that G,UG,<G.

(FC) If G € C then there exists G, € C with G G2,

Theorem 4.3. If S is an L—fuzzy syntopogenous structure on Y such that g(1y) is
S—dense (that is g(1y) is « —dense for every « € S), then C,= {G ¢ €eStis an
L—-fuzzy syntopogcnous g—family. Converscly, lIct C be an arbitrary L-—fuzzy
syntopogenous g—family. then we have an L—fuzzy syntopogenous structurc S 1c
= { €,;:GeC} on X Further, if g is injcctive. Then Se={«,:GeC} is an
L—fuzzy syntopogenous structurc on Y.
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Proof: This theorem can be verificd directly by theorem 4.1,4.2.

5. L—fuzzy local syntopogenous structure

Definition 5.1. An L—fuzzy local syntopogenous structurec on X is a nonempty set
S of L—fuzzy topogenous order on X having the following properties:

(LFSO,) S is directed in the sense that given any two members ¢ 1» €;0f S there
exists € in S finer than both € and «,.

(LFSO,) Foreach in S there exists €,in S such that X 1 €B implies the existence
of an L~fuzzy set D with x; € ;D « ,B.The pair (X,S) is called an L—fuzzy local
syntopogenous space. ’

' Proposition 5.1. (1) If(X,S) is an L—fuzzy syntopogenous space, then (X,S) is an
L—fuzzy local syntopogenous space. If S'= {{J «} ,8" = { «: (eS}, then

Les .
(X,8Y and (X,SP) are respectively L—fuzzy local syntopogenous space perfect L—fuz-
zy syntopogenous space. If Y <X, then (Y, S|Y) is an L—fuzzy local syntopogenous
space. (2) Let f:X Y be a mapping. (Y,S) be an L~fuzzy local syntopogenous struc-
ture. Then (X,f7(S)) is an L—~fuzzy local syntopogenous space. (3) If { S;€I} isa

family of L—fuzzy local syntopogenous structure on X,then S=VS ,is an L—-fuzzy
tel

local syntopogenous structure on X. (4) If { (Xi,Si):jF: J} is a family of L~fuzzy local
syntopogenous space, suppose X = g X ; and S=gS e then (X,S) is an L—fuzzy lo-
Jed

el
cal syntopogenous space. (5). If (X,S) is a perfect L—fuzzy local syntopogenous space,
then (X,S) is an L—fuzzy syntopogenous spqce.

The proof is omitted.

Proposition 5.2.Let (X,S) be an L—fuzzy syntopogenous space. For binary relation
<s on X such that for any x,y € X, x<gYiff ACLX (€S, 1€L, %0, if y; €A im-
plies x,;<<A, then "<,” is a preorder on X.

Proof: (1). Reflexive, since x; A implies x,<A; (2). transitive, if X<sy, y<s z
and for A€ L%, €€S,1€ L, 150, Z, €A, by (LFSO,) there exists €,€Sand BELX,
such that z; €;B €,A. As y<s z, So y,<B «,A, i.c.y, €,A also x<sy, thus X, <A, ie.
X<sZ. '

6. Image of L—fuzzy syntopogenous space

oAle

Proposition6.1.Let X - Y be a impping, & be an L—fuzzy semitopogenous or-

der on X, we define a binary relation €, onY as follows: 4 €, B iff /'_l(A) ((f-‘ (B)’.V

Then  is an L—fuzzy scmi—~topogenous order on Y, ((l is called as the image of €and
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denoted by f( ).
Proof: Because of /(0 )= 0, €0, =f'(0 Jand f ' (1 ,) =1, (1

P 4 X

=7 (1,),0, €,0,and 1, «,1,,and4 & Bimplics f™'(4) «f™"(B),thusf " (4)
<f7(B), as for any CE LY, (F{(C)=C, so AT(ANKK'(B)) ie. A<B.Also 4
<4 (B<B, implies /7(4,)< £ () ¢ B) < T'(B,). So £ 47\

ie.d « B ,fromabove we get that ,is an L—fuzzy semi—topogeous order on Y.

~te

Proposition 6.2. Let F:X - Ybe a mapping. (1) If €is an L—fuzzy topogenous
(res.symmetrical, perfect, biperfect) order, then f( € ) is an L—fuzzy topogenous
(res.symmetrical, perfect, biperfect) order. (2) If €< €, then f{ )< ). Q).If « is
- an L—fuzzy semi—topogenous order, then £(f( )< €, L) =1 QS .1 OF<
ORI <H € and f( €)O< K €N.(4). If { € {i€ I} is a family of L~fuzzy
semi—topogenous orders on X, then f{{) €)= U S €Jand AN €)=UA «,).

iel iel el tal

Proof: This proposition can be verificd dircctlly.

ante

Definition 6.1. Let f1X — Ybc a mapping. S is an L—fuzzy syntopogenous structure
on X, fis called compatible with S.If for any € € S and A B implies the existence of C
€L ” such that 4 < £~'(C) < B. :

Proposition 6.3. Let f be compatible with S, then S, = {fTK: KeSY} is an
- L—-fuzzy syntopogenous structure on Y.S ,is called the image of an L—-fuzzy
syntopogenous structure and denoted by f(S).

The proof is straigt forward and hence omitted.
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