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Existent fuzzy reasoning models are almost = built perhaps
unconsciously even vaguely on the base of inference relation
theory which is still lacking in a clear and deep analysis. To
clarify this theory and resolve some puzzles occurred in existent
situation, a rather serious analysis and statements on inference
relation 1is given, and it is emphasized from the exposition
that Mandani's model can not be explained on the base of
inference relation theory very will. To find the rather
reasonable base for it, a new framework of approximate reasoning
--Truth-valued-flow Inference(TI) theory is presented in the main
part of this paper.
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1. INTRODUCTION

Even though prominent progress has been occurred in the applied
areas of approximate reasoning based on fuzzy sets theory ,
existent models of fuzzy reasoning are not perfect yet. The main
difficulties exist in two points:

1) Theoretical defect of the very non-binary logic: the breaking
of uniqueness of implication form occurs naturally in logic while
it go out the gate of bi-values. there are many different
formulae of implication able to pass the check from the respect
of logic, they are all coincide with the Boolean implication
whenever the truth values of anticedents and consequences of them
return into (0,1). We are lacking reason to receive or refuse
which one of them.

How to adding theory in order to catch information of selecting
appropriate implication form in concrete situation is the main
task of non-binary 1logic. It is an important contribution of
fuzzy logic that using fuzzy relation to describe implication
brings us the possibility of expending the capacity of logical
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information. It is possible ,not yet. Inference relation theory ,
the base of fuzzy reasoning,have to be investigated seriously.
But as known, some puzzles even paradoxes exist.

For example, 1in spite of different Xkinds of implications’

combination, such as'and','or', 'else' etc., the writing forms of
inference rules is often written as ,
(1.1) if A; then Bjy,......,if AL then Bp

This form is often transferred into an inference relation R:

1.2 n

(1-2) RCx.y)= V(A:(x) A B(¥))
Even though it is useful in practical fuzzy control initiated by
E.H.Mamdani, unfortunately,as the mention in Proposition 2.3 of
this paper ,the correctness of this formula ,whatever the
supports of Aj are cover the universe U or not, can not be proved
seriously by existent inference relation theory.
2) Complexity of performing existent fuzzy reasoning models in
practice, especially it becomes to a big problem when we want to
realize fuzzy reasoning in hardware of computer.
We are trying to take a rather serious analysis on inference
relation theory in This paper , using shadow-representation
theory to adding the information of selecting . We devote to
promoting this theory but do not be restrained in it. In order to
overcome some practical difficult in constructing hard-ware
systems of fuzzy reasoning, in order to give (1.2) a reasonable
explanation,in order to unify fuzzy reasoning and other
non-determinate reasoning, we present the Truth-valued-flow
Inference method in this paper. TI is not restrained in inference
relation framework but conserves closed relation to it.

2. CLARIFYING OF INFERENCE RELATION THEORY (BINARY CASE)
We have to first get a serious statement on binary inference
relations.

DEFINITION 2.1 The binary inference relation of implication
A--->B is that

(2.1) Rusp(x.y)=T(A(X)=2 B(y))
where

1. T(P)=1, T(Q)=0;
(2.2) T(P-Q)=
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Obviously, we have that
(2.3) R, .g=AXB+AXY

DEFINITION 2.2 The first term and the second term of right
side in (2.3) are called real part and ‘trivial part of that
inference relation respectively and denote that

RY),=AXB
Ry =AxYy

DEFINITION 2.3 The combined relations of several implications are
defined as follows:

(2.4)

R(A *B‘)and and(A -8 ) ﬂ R" 8
(2.5) n

(A,*Bl)or...or(A,,-’B,,)s..EJIR"l"sa

2.6 (n =R n
( ) R(A 4By Jelse.(A,48,) R"l"B|+R7|42*Bz
2.7 (2) = p(2) (2)
( ) R(A,-os Jotsa.(4,-8,) Rﬁl*ﬂunRﬁz"”z

where the complementary of A is denoted by a bar and
AVAy=A\NA A+ A=A VA (A, NnA,= ).

PROPOSITION 2.1

(2.8) Rf;)‘” Jand(ageny) = A1 A2X B+ A Ay X B B+ A Ay X B,
RV )= AU, xY

{A,+8,)and{4,~8,

(2.9) REA <+ B )or( 2482)=A‘A2X(B‘U82)
(2) =A A
R or(Az—’Bz) . 1 2X y

(AI"B|)
(2.10) RE;Z)OISB.(AQ-OBZ)=AIXB|+H1A2X82
(2) i
R(Ame,)olsn.(,q:.,gz)=7ﬁu_/[;x)
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We are interested in the special case of that A =A3+A or
B1=B=B. It is shown in the next proposition.

PROPOSITION 2.2
(2.11) R(

(2.12) R

A+8,)and(4-8,) " RA*anR""Bz

=
A;-+B)and{ 4,0 8) 1

(2.13) R(4a8,)or(48,) = Raa8,UR4ss,
(2.14) (A,*B)or(A,-»B)-_-‘RAl"BnR‘ 2B
(2.15) R(A-'B,)azs..(A-okz)=RA"Bu
(2.16) R

4,-8)olsa,(A,28) Rﬁ:"BURM*B

PROPOSITION 2.3 The necessary and sufficient condition of that
(2.17) R(

Al-bBl)and...and(A,,-tB,,) = R(A,-’B,)or...or(A,,-’Bn)

= R(Al-)Bl)alsa....olso(An_,Bn) = IEJI(A!-X Bx)

is that
A+ Ag+ o+ Ag=X, Aj# A (i#))

Those propositions tell us that the combinations of implications
have to be indicated in the forms of (2.4)--(2.7), generally they
are different each other, and their inference relation are
different with (1.2) except that Al,...,An form a division of X..

3. DESCRIBING IMPLICATIONS BY MEANS OF FACTOR SPACE THEORY

To find out an new approach for explain Mamdani's formula, we
have to think of the meaning and representation of implications.
Implication is a non-defined concept in logic, although 1ogicia¥
are absorbed in describing the concept of implication by means o

the contained relation of sets, The main relationship is that
implication 'if x is P then x is Q' holding true is equivalent
to:

P(extension of concept P)c Q(extension of concept Q).

When the antecedent and consequence of an implication are able t
be described in a same universe of discussion, the meaning o
implication <can be described by 'contained ! relation,
Unfortunately, their universes are different in general. But in
our opining implication is a relation between propositions which
reflects causality of them. Even though the antecedent and
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reflects causality of them. Even though the antecedent and
consequence of an implication are described in different
universes, they should be found in a common factors space and
occurred some contained relation in that space caused by the
causality, Let us restate the definitions of factors spaces.

DEFINITION ([8]) A factors space is a family of sets { Xg ) (feF)
with a Boolean algebra F as its index set and satisfies that

1y Xo=¢;
2) fag=0 impliesthat

Xpa=X, %X,

Ivg

where F=F(v,na,c,1,0)

f in F is called factor, Xf is called states (or characteristic,
phase) space of f, Xg¢is called complementary space of Xg, X; is
called wh le space.

Roughly speaking, a factor space is a family of states (or
characteristic, phase) spaces being a familiar term in control
(recognition,physics) theory, but Factor space theory emphasizes
the varying of states spaces with the varying of factors.

DEFINITION (([8])) Let O be the universe of objects concerned with
a family of concepts which can be represented as fuzzy subsets ot
0. Mapping r : O—> X3 is called representation of O and r(a)
is called the representation of concept A in F(0)). Denoted

(3.1) (A =A{fI1FeF. T (L, (r(A)))=r(A))

whicq is called rank of concept A, where | denotes project to
Xf, |' denotes cylindric extends to Xj.

DEFINITION 3.1 Let { X¢g ) (f€F) be a factors space, P¢€ F(Ol)l‘e
F(O2), rj:0ij—>Xj be representation of 0j(i=1,2). We call that
implies Q denoted P—>Q if they satisfy that

(3-2) 1@ (PY)cl,ry(Q)

PROPOSITION 3.1
(3.3) P2q.p ' Cp.q'qa P =Q’

(3.4) P-Q,P'CoQ 3PV 2QVvQ . PAP 2QAQ"

4. INFERENCE CHANNELS AND THEIR BASES
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Viewing the inference process as truth values flow along the
channels of linking antecedent to consequence of implications, we
have to give some axioms on inference channels according to the
properties of implications mentioned above.

DEFINITION 4.1 Let C be a subset of F (01)X F(0O3), we call
a set of inference channels under a given knowledge if

(4.1) 1)(¢.Q).(P,0,)ecC;
(4.2) 2)(P.Q)eC,P'CP.QQ=(P",Q")eC:

(4:3)  3)(P1.Q;).(P2.Q.)€C3 (P, v P10, vQy)u(P A P;.Q, AQ,)EC

channel (P,Q) can be written as P —>Q.

The meaning of axiom 2) is clear: the smaller set at head and the
bigger set at the tail, the weaker implication. So it is
necessary to define a relation of representing the value of
information of channels.

DEFINITION 4.2 Denote
(4-4)>—={(P,2Q,,P3Q,)|P,»Q,eC(i=1,2);P,2P,.Q,<CQ,)

it is called validity relation, we call channel Pj—> gy is more
valuable than Pp—>Q, if (P1,Q1l) >(P2,Q2). (P,Q) is called a
valuable channel if there is no (p',Q')>(P,Q).

PROPOSITION 4.1 JC,>—) forms a poset, and ( C',v ;A ) forms a
lattice where ¢ 1is the set of valuable channels and

(PI’QI)V(P2’Q2)=(PIVP2'QIVQ2)
(Pnle)A(Pz'Q2)=(P|APz'QlAQz)

DEFINITION 4.3 We call a subset B of C' a base of C' if c'
is the smallest closure of B under V and A ,i.e. c = [HLM
We call B a left-ward base if it is a base and

.B={P|3Q:(P.Q)e B)

forms a linguistic division of Oy, i.e., .B 1is the set of
linguistic values of a linguist}c variable. We call E={({u},Q) |
u in Q1) a point-base of C if Cc” = ([E], A )

5. TRUTH-VALUED- FLOW INFERENCE

Illustratively understanding by the name of TI, we can imagine
the inference process as the flows of truth values along the
channels of linking the anticedent to consequence of implication
concerned.

Step 1 (pretreatment) the knowledge being used to inference
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provides us a base of inference channels B. It prefer a
left-ward base held the form as fallows

(5.1) PiV..UP, —Q, (i=1,...n)

The fact P' is viewed as a generator of truth values, which get
truth value at any Pj4j as follows: :

(5.2) Ay=near(P,;,P)=\/ (P, (u)AP(u))

uel
Step 2(truth values flow) Put the heads of each channel of B on
the generator P and get truth values Ai = near(Pj,P). Eadh
channel transfers 2i from its head to its tail respectively,
and get the consequence as that

(5.3) T(Q)=1, (i=1....n)

here, if the channel is not simple but hold the form as (5.1)
then we need next principle.

V=-PRINCIPLE Let
(P,Q)=(19I P,,Q)= V(P,;.Q)

=1
be a complex channel combined from several channels, the truth
value inputed into its head is the maximal of truth values
inputed into the heads of each simple channel involved.

8tep 3 (truth value convertor) There many ways, for example,
taking combination

Q' ()= V*(LA*Qi(»))
where V' and A" be the pair of generalized fuzzy operators, and

then the convertor can be taken in any way. We get determinate
value even directly from (5.3).

6. FUZZY INFERENCE RELATION THEORY

Continuing the section 2, we give a serious analysis on the fuzzg

inference relation based on inference channel's analysis an

applied the shadow -representation theory.

Giving a simple information: 'if u is P then v is Q', When P,Q

are both ordinary subsets, the point base of C determined by the

information can be found and the graph of it is the relation

(2.3). When P,Q are fuzzy subsets, how do we do?

According to the theory of shadow-representation, for a given

fuzzy subset P on U, there is a class of random sets defined on
(2Q.F,.p;U.D,D)
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(see [9])such that their covering function equal to P:

(6.1) pe(w) = p(w | E(w)ru)=P(u)
where is one of random sets in that class, which is a
mapping

£:0-D, F-D measurable

To determine a random set corresponding to a fuzzy subset, there
must define selections. So call a selection s, it is a mapping

s:F(U)-> 0P
(6.2) s(P): F-D measurable: p,,=P (PeF(U))

DEFINITION 6.1 Giving a fuzzy implication P->Q, P,Q are fuzzy
subsets on U,V resp., suppose that P,Q can be represented as
fuzzy shadows of random sets defined on

(2.F,p;U.D,.D,) »n (Q.F.,p:V.D,.D,)

resp., giving the selections s; and s, resp., the fuzzy
inference relation of implication P->Q is defined as follows:

6.3 -

note that the inference relation occurred in the brackets is an

ordinary inference relation defined in (2.3).

Different selections determine different fuzzy inference

relations, the public selection is cut- selection. For a given

fuzzy subset Q on U, the cut-selection is defined as follows:
s¥=gs*,=col

where A:Q2-[0,1]is a random variable uniformly distributed € [0,1]

c:{O,1]1=-=2PU): A(Q)=Q,={ucl|Q(u)21r)

PROPOSBITION 6.1 (cut-inference relation) under cut-selections,
the fuzzy inference relation is that

(6.4) Rpo(u,v)=1-m[P(u)AaQ(v),P(u)]
where [a,b] is interval and m is the Lebesgue measure.

PROPOSITION 6.2 ( cut-combined inference relation) Under
cut-selections, we have that .

(6.5) n
R(Pl-OQl)and...and(F,.-oon)= 1 ‘m(l‘k_);[Q‘-(U)AP‘(u),P,-(u)])

(6.6) n
Rpﬁmhhm“fﬂJ=1-m(pgqwaqu»qun)
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(6.7) n i-1
R(P|"Q|)olso....alsn(pn-bQ,,) -1- m(l.L_Jl [Q'(U) v (l\'/l Pi(Ll')) A P,-(U.).P,-(LL)])

NOTE 1. For mula (6.4) is coincide with Lukasiewicz-Zadeh's
inference relation , indeed we have that :

I-mP(u)AQ(v), P(u)=(1-P(u)+Q(v))Al=P(urQ(v)

NOTE 2. From Proposition 6.2 we can see that Mamdani's formula
(1.2) can not be explained by the inference combined relation,
but it can be explained by means of truth-valued -flow inference
because, the output of inference process according to Mandani's
formula is that

Q (v)=(P OR)(v)= \/(P'<u>A\"/|(P.-(u)AQ.~(v)))

uel [

- .-\."/.((u\/u”'(“) A P.-(u)) AQu(v)

=,_\_"/l<near(P'.P> AQ(v))=i\_"/.(k.»AQi(v))

This is coincide with (5.4). Truth-valued-flow inference model is
able to explain the Mamdani's formula, which has the convenience
that we do not must thinking a group of inference channels has
to be represented as a combined inference relation, we can
respect these channels perform their function independently!:
transfers the truth value from their heads to their tails
respectively. Of course, we can get a whole consequence in the
step of truth valued convertor.
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