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SUMMARY:

The general methodological framework of fuzzy modelling is considered.
Particular emphasis is set on the analytical approach to building fuzzy models,
expecially linear fuzzy models. Such models are obtained as a fuzzy extension
of usual linear models. Apart from the known extension principle of Zadeh
and the so called fuzzy parameter extension, a new model of fuzzy
combination is also considered.
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1. INTRODUCTION

We continuously observe many regularities in the world we live in.

For many reasons we want to express this regularities analyticaily, by means of
mathematical formulae.

These formulae are often called models, or mathematical models.

The usual practice is to assume that quantities under investigation are functionally
related.

There are however many situations where these quantities are related in a more
obscure manner. Very often it is difficult, or even impossible, to distinguish dependent
from independent variates.

Especially in economics, where our understanding of the real phenomena is very
poor and incomplete, it seems to be more realistic and more useful, instead of making
unrealistic mathematical assumptions about functional dependency, to take the data as they
are and to try to represent the relationships among them in such a way that as much
information as possible would be preserved.

2. OBSERVATIONS

In order to model any phenomenon by means of mathematical operators it is
necessary first of all to distinguish some set of objects underlying the phenomenon under
investigation. An object is meant here as any entity showing characteristics that can be
measured.

Characteristics are also called variables, quantities or varieties. They are denoted
by symbols Y, X1,X2.... . For simplicity of exposition only two variables Y and X! are
considered in this paper, and therefore the latter will be simply denoted as X. If O denotes
the set of objects and R stands for real numbers, then the mapping

Y:0-R (D

is treated as a measurement or observation of Y, which should usually satisfy some
conditions (see e.g. [11]).

(°) This work was supported by the Ministry of Education



169

The values Y(o;) for o;€ O are denoted as y; and are called the observed values of
variable Y. For simplicity, the range of mapping (1) is denoted by the same symbol Y.

Very often it is difficult to perform measurement according to (1), or there isn’t
any known procedure for that. In such cases the linguistically expressed intensity of the

characteristic under investigation can be assigned to each object oe O. The linguistic
expressions can be modeled as fuzzy numbers, so that instead of (1) we can have

Y : O - Fuz(R) 2)

where Fuz(R) stands for fuzzy numbers.

To the fuzzy measurement of the type (2) we can arrive also performing the usual
measurement and then subsequently blurring the obtained results. The motivation for such
a procedure is explained below.

The problem of constructing the membership function is a crucial problem for the
whole theory of fuzzy sets.

Therefore it seems to be unadequate to start considerations with a proposition like:
“suppose the observations are given as fuzzy numbers”, which is probably the most often
used expression in literature on fuzzy sets.

In this paper, in order to avoid such expression, for obtaining fuzzy numbers from
crisp measurements the idea of blurring is applied (see also e.g. [8]).

After performing the measurement we obtain a certain number, say m, but we are
sure that this number is one of many other possible numbers.

It seems reasonable to assume that the number so obtained is the most possible or
the most credible one. To all other possible numbers grades of possibility or credibility
are assigned, such that the more distant the numbers are from the most possible number,
the smaller will result the grade. In order to precisely define these grades we introduce
here the blurring operator which is treated as a fuzzy subset on the real line depending on
three parameters which can be easily determined, e.g. by putting some simple questions
to the subject involved in the measurement process.

Suppose the fuzzy subset

¢ : R - [0,1] 3)
depending on fixed parameter 0 < r < oo, satisfies the following conditions:

1) ¢,(0)=1,foranyr

2) ¢, (x) =c, cis constant, for any x # 0

3) ifrj <1y, then r, is at least sharp as O, ier sn= O, x) < ¥r, (x) for all xeR,
where < is the well known sharpeness relation defined as follows:
b<ae>as<b<12ora=bz21/2.

Such a mapping is called here graduator. The continuous graduator will be called

bell-shaped graduator or simply fuzzifier if it satisfies also the following additional
conditions:

4) O (x) = ¢ (-x),
5) X1 <X2 <0 = ¢ (x1) < O (x9).
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The simplest function satisfying the above conditions is the following:

1,ifx=0 |
Ag(x) = { @
0, otherwise
Other examples of fuzzifiers can be defined as follows;
6! () = exp ((In 112) de()), )
07 (%) = 11 +dex)) , © -

whered,(x)=|x .
For these two fuzzifiers the following holds: ¢:(1) =1/2,i=1,2,forany0<r<oo.
The fuzzifiers with such a condition are referred to as standard fuzzifiers.

It is also easy to check that for any xe R ¢: (x)=1/2, i=1,2, and in the limit

case, when r — oo, functions ¢! and ¢2 become both the characteristic functions of the
interval [-1,1].
The above properties allow the interesting interpretation of the parameter r as a

coefficient of fuzzy aversness or as a grade of accuracy attitude. Usually the coefficients
are treated as normed to the unit interval, therefore by

r==  o<as<l )
l-a

the normalized coefficient of fuzzy aversness is defined. In the case of maximal aversness

(o = 1), fuzzy sets ¢! are reduced to the usual interval [-1,1] i.e. membership functions
become the characteristics functions. In the case of minimal aversness toward fuzziness,

i.e. when o = 0, the fuzzy sets ¢! become the most fuzzy, i.c. ¢i (x) = 1/2 for any xeR.

Having some fuzzifier ¢ let us define the fuzzy set F by the formula:

F(x)=¢(’£sﬂ) ,s20, ®)

putting by convention

¢("-—o‘—“-) = Ay (x-m).

The parameters m and s are called respectively the mode and the spread of the
fuzzy set F.

We have adopted here the usual definitions:

- the mode or modal value of F denoted as u(F) is the value m such that F(m) = 1
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- the spread of F denoted as (F) is defined to be equal to half of the diameter of the set
{x|Fx)212} .
The intuitive meaning of parameters m, r and 3 is explained as follows:

fuzziness aversness
spread .
big small
big / \ /\

1 L

m m

J—L -/\

L 1
m m

We are ready now to present the blurring procedure, mentioned at the beginning of
this paragraph.

Suppose a number m is given, obtained by some imprecise measurement process
(e.g. by expert judgement), it is reasonable to consider it as a modal value of fuzzy
number Y. In order to determine the spread of this number it is enough to have the most

uncertain value, i.e. a value k such that F(k) = 1/2, the spread is then egual to the
number abs (m - k).

Within the class of the same accuracy attitude we introduce the equivalence
relation: A =B < U(A) = W(B) & 8(A) = §(B).
The grade of fuzzy aversness or accuracy coefficient, which is assumed to be

fixed for a given subject or for a given measurement process, can be determined by means
of some experiments which are not discussed here.

3. MODELS, LINEAR MODELS AND THEIR EXTENSIONS

Suppose crisp measurements of two economic variables X and Y are given in the
form of the following sequence of pairs (x, y}), ..., (xN» YN)- These measurements,

also called observations, will be treated here as an observational relation Ro = {(xl, YD
o (XN, YN)} © X x Y (see [9]). If there is a strict inclusion Ro € XxY, it is

reasonable to say that variables X and Y interact. In order to account for this interaction

the usual praxis is to find some mathematical (analytical) expression which mirrors this
interaction.

One of the simplest way consists in finding a function f : X — Y such that y; =
f(x;)fori=1, ..,N. Ify; # ¥j=> X; # X;, then a function with such properties certainly

exists. Normally we face the situation where condition y; # ¥j=> X; # X; is not satisfied.

In this case we look for some approximate solution. This means that we look for some
relation instead of function, or for a function f such that conditions f(x;)) =y;, i=1, ...,

N are violated as least as possible (assuming of course that function f belongs to some
prespecified set of possible approximants).

Suppose for example that we look for a function G: X x Y — R such that for all
observed values (x;, y;):

G (xi, YI) 20. (9)
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Function G defines the relation R, ¢ X x Y which is referred to as a model
relation, this relation accounts for the relationship between variables X and Y.
Without any other restriction function G might be defined as follows:

Gxy)=x2+y2-12,
where r is big enough to satisfy the condition (9). A particular‘case of (9) is the model:
Gxy =0 10)

which determines some implicit relationship between X and Y.
The most often used model is however an explicit function

f:X->Y (11)
belonging to a prespecified class of mappings. Very often the linear (in a,, a;) function:

f(x; ag, a1)) = a5 Po(x) + 2;91(x) (12)

is used, where @, and ¢, are some fixed real functions defined on X.
It means that in this case the set of possible model relations is the following:

M = {Rp | (xy) € Ry & y =2, 0y(x) + 2; 91(x), 8, 31 €R} . (13)

In the simplest case, when @y(x) =1 , ¢1(x) = x, the following linear model is
obtained

y =a5+a;x. (14)
Roughly speaking, to determine the model (12) means finding the coefficients a,

and a; such that function (12) satisfies some optimality criterion in fitting the observed
xdata R, In the ideal case the following system should be satisfied:

yi=f(x) , fori=1,..,N. (15)

In practice we look for approximate solution, i.e. we look for a function such that
the error measured by distance

N r\/r
D(y.2) = (z ly; - ) | )‘ . >0 (16)
i=1

is as small as possible, where y = (yy, ..., yN), z = (f(x}), ..., f(xN)).

We can work in the same way in the case of fuzzy modelling. Suppose that
observations are given now as fuzzy numbers:

XpY) ,i=1,..,N 17)

where X;: R — [0,1] and Y; : R = [0,1].
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The fuzzy granular observations (using the terminology of [3]) can be represented
by some usual (non fuzzy) function or by a fuzzy function. In the first case it means that
the set of models is the following:

M={flf:X > Y]. (18)

From this model set, as previously, we want to choose the best element. As a
criterion of optimality the following system of equalities could be chosen:

Y;=FX) ,i=1,.,N , 19

where fuzzy set F(X;) is defined according to the known extension principle:

FXy ) = sup X (x)-4 (y - f(x)).

The conditions for the existence of a function f which satisfies (19) are given by
Dubois and Prade in [3].

The second type of fuzzy modelling consists in representing the fuzzy granular
observations by means of some fuzzy relation. In this case the set of possible models, i.e.
fuzzy models, is the family of all fuzzy relations:

M=(RIR:XxY - [0,1]}. (20)
From this set we want to choose a relation Ry, such that:
Y;=R, X)) ,i=1,.,N, 21

where by Ry, (X;) we mean the sup-min composition:

Rp Xy (») = Sl;p min (X; (x), Ry, (x,y)) .

The condition for solvability of system (21) is given by Gottwald in {5]. Namely,
system (21) has a solution if and only if the fuzzy relation

N
Rm = N Xi @ Yi (22)
i=1
is a solution to this system, where
X OY) (xy) =X; (%) * Y; ()

and * stands for Sanchez operator:

1,ifa<b
a*b:
0, otherwise .
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It is interesting to note that if there are solutions for (21), then relation (22) is the
greatest one.

Other solutions to (21) (if any) are considered in [5].

System (21) can however have no solution, in this case the approximate solution
can be looked for.

To reach this aim some metric for fuzzy numbers is needed, which can be defined
in various ways.

The simplest, very often used, is the following modification of city metrics:

D(A,B) = sup | A(x) - B(x) | (23)
X

Instead of (23) the Zadeh’s separation

D(A,B) = 1 - sup min (A(x), B(x)) (24)
X

can also be used.
The quantity

S= VD ®p(X), ¥y 25)

i=1

can be considered as approximation error.

The problem of fuzzy modelling in this case is trasformed in to the optimization
problem:

N
min VD (R(X)), Yy, (26)
ReM =1

where M is defined by (20).

In contrast to the problem:

N
min ¥ (y; - f(x))2,
feM i=1

where M is defined by (13), there is no efficient method for solving (26).
It is worthy to note that both model spaces (18) and (20) are very general, and no
restriction was put neither to the kind of functions nor to the type of relations.

There are however two other possible kinds of fuzzy modelling based on the fuzzy
extensions of the set (13).

The first one, roughly speaking, consists in replacing numbers o, and o, by
fuzzy numbers A, and A, and it is known as fuzzy parameter extension.

The second kind consists in replacing function @, and @, by fuzzy relations ¥,
and ¥}, and it is called here as fuzzy combination extension.
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4. FUZZY PARAMETER EXTENSION MODELS

Suppose that for fixed sets X, Y and K following function is given

f:XxK-Y 27)
which should be extended to the fuzzy mapping:

F : X x Fuz(K) = Fuz(Y). 28)

Suppose that a fuzzy subset A € Fuz(K) is given, treated as fuzzy parameter, then
the fuzzy subset Yy € Fuz(Y), which corresponds to fuzzy parameter A and to any
argument xe€ X, is defined as follows (see [1,2]):

Yx(y) = sgp [AQ@) - A (y - (x,2))]. (29)

Taking for example
f(x,a) = a5 + ajx, 30)

and assuming a = (a5, 2;), A = (A, , Ay) and A (a, , a;) = min (A,(a,), Aj(ay)), then
from (29) the following model follows (see [12]):

Yy =A,+Apx (31)
where A, and A are fuzzy numbers, and operations + and - are defined as usually:
(Ao + Ay) (2) =supmin (A, (a), A; (z-2)),
a
(Ax) () =A%), forx=#0.

The problem is now to determine the fuzzy coefficients A, and A, in such a way
that model (31) fits in the observed data as well as possible.

In econometrics two methods for estimation are in use: least squares method and
maximum likelihood method.

Instead of the least squares - like techniques considered in the previous paragraph,
optimization - like techniques will now be discussed. It is known that maximum
likelihood estimation requires the assumption about the probability distribution.
Analogously, in this and in the next paragraph assumptions about possibility distribution
of fuzzy variables will be required.

Suppose, for example, that fuzzy numbers A, and A, are of the following type:

a - 3

Ai(a)=¢( s ),i=0,1 (32)

where ¢ is some fuzzifier (discussed in paragraph 2) and a;, s; are parameters.
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Putting ¢(z) = ¢ - |2 |r, r 2 0, fuzzy mapping (31) takes the form:

IY'RO-QIXIr

Yx (y) =e Sl;'f' |81X|r (33)

which is considered as a fuzzy model. The problem is now to determine the parameters
occurring in it.

The value Y,(y) can be interpreted as a grade of connectedness between x and y,
or by other words, as a truth value of the proposition: “pair (x,y) is a good model point”.
Taking into account such an interpretation it seems reasonable to determine the parameters
ag, 41, Sq, and s, in such a way that:

foralli=1,.., N, YXi (y;) is as much close to 1, i.e. to maximal admitted value,
as possible.

If the quantifier “all” will be transformed in product operator, then the above
sentence could be expressed as an optimization problem:

N
maximize I |Y,,{i (yi)
i=1
with respect to parameters a,, aj, Sq, 51

If YXi (v;) is defined by (33), then the above maximization problem is equivalent
to the following problem:

ming |yi-a°-a1xi|'

T a=(aga1) , S = (Sq,81)-

P r
as i=l Sy F |s1xi

If the parameters s, and s; are fixed, then parameters a, and 2, can be determined
by one of the many existing procedures for L, approximation (see e.g. [4]).

If the parameter s, and sy are also to be determined, the problem becomes much
more complicated.

There are now two possibilities: either minimize numerator with some restriction

put on denominator or vice-versa, minimize denominator (standing for fuzziness) with
restriction on numerator (standing for fitting).

The latter approach was applied by Tanaka, Uejima and Asai in their interesting

paper [12]. This method is briefly presented here and then some modifications are
considered.

Suppose that observations are given in the form (x; , Yy .i=1, .., N, where x;
is a real number and Y is a fuzzy number.

Fuzzy numbers Y; (i = 1, ... ,N) are defined as triangular numbers with mode m =
yi and spread s =; (y;, ; are given real numbers, ]; > 0). In the same way are defined
fuzzy coefficients A, and A;, which are to be determined (see [12]).

Model (31) takes the following form [12]:

ly-a,-ayx]|
Yo (y)=1-—L 20781
so + 51 |x|
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N
Instead of maximization of | |Yxi (yj) with respect to a,, a1, S, and sy, which is
i=1

unlimited, paper [12] contains the proposal to minimize the function:
f(ag,21,8,81) =55 +5

subject to the following restrictions: lyi - 85 - a1X;j | <t (5o + 51 |xi | - Ip,i=1,..,N;
S0 20, sy 20, where t is a fixed number (0 <t < 1), interpreted as a threshold for
admissible degree of fitting of the fuzzy model.

As alternative to the method proposed in [12] the following minimization problem
might be introduced:

N
min 3 |y;-ay-ax|”
as i=l

with restrictions: sy + 51 Ixil-lis|yi-ao-alxi|,i= 1,..,.N;5,20,520.
For r = 1 this problem can be solved by any linear programming method, and for
r = 2 this is a typical quadratic programming problem.

5. FUZZY COMBINATION EXTENSION MODELS

Suppose that function (27) will be expressed as a relation p : (XxY) x K — {0,1)
defined as follows : p(x , y , a) = A, (y - f (x,a)).

The extensions of (27) to the mapping R : Fuz(X x Y) x K — [0,1] is defined as
follows:

R(x,y,a) = iﬂg ¥ (x,y)- Ap (y-f(x,2))] , (35)
with W(x,y) fuzzy relation in X x Y.
Let the function (27) be of the form:
f(x,a) = a5 @y (x) +a; ¢; (x) (36

where @, , ¢, are fixed functions.
Let '¥(x,y) be defined as the minimum of two fixed fuzzy relations:

Y :XxY—->[01],i=0,1,
then the extension (35) takes the form:
R (x,y) =2, ¥y (x,y) + 21 ¥ (x,y) (37

where a; ¥; (x,y) = ¥; (x, y/a;) and operation + is meant as a sup-min composition of
two relations
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¥, (ky) = 0 (————y : "’i"‘)) 38)

Si

where ¢ is some fuzzifier, @;(x) are given functions and s; > 0, then fuzzy combination
extension of (36) will take the form:

Ry (x,¥)= (——“—y - fo(x))+ 0 (——————y - a“"l(")) :

a 1

Suppose that ¢y(x) = 1, ¢1(x) = x and ¢(z) = exp (- | z |7), then the above fuzzy
model becomes the following:

Iy-ao-alxlr

- T r
Ry (y)=e %ol +laml”, (39)

To determine the coefficients, following a similar reasoning as in previous
paragraph, we have to solve the problem:

N
max [T Ry (xi5 ¥4)
=1
which is equivalent to

min g lyi-ap-a; x;l”

a i=1 Iaosolr+|alsl|r‘

(40)

Let us consider the particular case forr = 2.
We introduce the following notations:

_1-2y _lag 11 x
A= -2xy ’a_[all’B- x x2|°
[ 2
D= sg O ,c=y2,
| 0 59
then (40) becomes:
N

Aia+a Bia+ci

min ' ,
a aDa
where A; =[2y; 2xyj] and B; and c; are similarly defined.
For the minimization some non-linear programming technique can be applied.
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6. FUZZY FENCED MODELS

The model is usually considered as some mapping, and the common practice is to
put emphasis only on the “law” of this mapping, not taking care of its range and domain.
'tI_‘he dom6ain of the model is particularly important (the discussion of this problem could be
ind in [6]).

Using fuzzy sets methodology it is quite easy to take account of law and domain,
both law and domain in the case of fuzzy models being expressed in the same manner i.e.
as fuzzy sets. There is remarkable analogy with fuzzy optimization where goals as well as
constraints are aggregated into one fuzzy set.

In the framework of fuzzy modelling another important methodological
interpretation could be proposed.

It is well known that two approaches to modelling could be distinguished: model
oriented and data oriented.

As we will see later on, these two approaches could be considered together.

To this aim, let us consider the observed data as a fuzzy relation R,,.

In the crisp case it was very natural to consider the set of pairs (x; , y;) as a
relaton Ry cXx Y.

For the fuzzy case another definition is needed.

Following [3,5] the fuzzy grain is defined here as a fuzzy relation R‘i):

R, (xy) = Xi®) T Yi(¥) ,
whereT is some t-norm and X;, Y; are fuzzy numbers, which represent the fuzzy
observation.

In the case when observations are given by crisp numbers (x;, y;), fuzzy grain R:,
is defined by the formula:

X-X;) (Y‘Y i\l

Ry(ey) =0~ T 0[=t]  5:>0

where ¢ is some fuzzifier.
Observed fuzzy relation R, is defined then as

N
Ro= 1 Ry

i=1

where L stands for some t-conorm.

Suppose that two characteristics X and Y are functionally related by y = f(x).

The model f should be restricted to the observed data and this can be done by
constructing the following fuzzy relation Ry, restricted (fenced) to the observed data R,
(see [10]):

Rr (x,y) =Rq (x,y) * Aq (y - f(x)) ,

where * stands for some confluence operator e.g. t-norm. For example, if f(x) = ax + b

the above model is nothing else than a fuzzy segment on the plane, treated as fuzzy subset
of the following set: {(x,y)ly = ax + b}.
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Suppose now we want to restrict fuzzy relation R, to those points which
approximately are lying on the line y = ax + b. Using some fuzzifier, the expression

“approximately lying on the line” can be formalized as a fuzzy set ¢ (us’—{;l)-} and
the restricted fuzzy model takes the form:

R, (x,y) = Ry (x.y) * 6 %—b) .

Geometrically a certain fuzzy segment is formed on the plain, but now not only the length
but also the width is fuzzy.
Generally if Ry, is any fuzzy model determined by some methods described in

previous paragraphs, then it can be restricted to the observed data making confluence of
two fuzzy relations:

Rl’ (x’y) = RO (xvY) * Rm (xvY) .

If we have no theory for costructing the model Ry, this means there is no reason

to distinguish any particular relation Ry, then we put identically Ry, (x,y) = 1.

In this case we follow an entirely data oriented approach, we trust only in
observed data, R, is our model.

On the contrary if the observed data are so vague that we cannot distinguish any
value which could be considered as a more possible than the other, then by putting

R, (x,y) =1 we follow the model oriented approach.

7. CONCLUDING REMARKS

J. Johnston, one of the founders of econometric methods, said that the bulk of
conventional economic theory postulates exact functional relationships between variables.
The most elementary acquaintance with economic data, however, indicates that points do
not lie exactly on straight lines or other smooth functions (see [7]).

In order to circumvent these inadequacies, statistical relationships or mean-value
relationships were introduced instead of functional relationships between two variables

The other way to describe the observed relationships is to use fuzzy sets
methodology.

Econometric theory has firm mathematical foundation but weak empirical
confirmation.

Fuzzy sets approach to economic modelling on the contrary, is intuitively very
appealing but until now has not been founded mathematicaly.

There are many possibilities of formalization but very little empirically based
criteria to choose among them. _

In this paper we have discussed some of the possibilities which seem to be more
workable than others.

This paper in its spirit is closely related to that of Dubois and Prade [3]. Dubois
and Prade distinguished two stand-points of modelling, the analytical and the granular,
and the latter is considered in their paper. In our paper we follow the analytical point of
view first presented by Chang [2] and then developed in [12].
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