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Abstract: Quantum logic notions are expressed in terms of the
fuzzy set theory. The notion of a fuzzy quantum dynamical system

is introduced and a version of the Poincaré recurrence theorem is
proved. ’

1. Introduction

Dynamical problems do not belong to the mainstream of the
quantum logic approach to the foundations of quantum mechanics.
There exist attempts at decsribing temporal changes of states and
properties of physical systems within this approach (see, for
example, Chapter 23 of Beltrametti and Cassinelli boock [1] and
references cited therein D but, as it was mentioned in [1]1, the
quantum logic approach is generally a static one. Recently, D.
Markechova (2] made an interesting attempt at generalizing the
notion of a dynamical system in the sense of the classical
probability theory [3] to the so called F-quantum spaces studied
by Riecan [4]. However, F-quantum spaces, introduced within the
framework of the fuzzy set theory by Piasecki [5] under the name
of soft fuzzy o-algebras, resamble quantum logics only by their
general form. Particularly, 2Zadeh’s [8] max and min fuzzy
connectives used by Piasecki and Riefan cannot describe quantum
logic meet and join and, moreover, the negation in F-quantum
spaces is not an orthocomplementation [7,8]. There exists, however
possibility of describing quantum logics in the language of the
fuzzy set theory. This possibility was mentioned in [1]1 and
developed in [9] by Guz and in [10,7,8,11]1 by the present author.
Therefore, it is worthwhile to apply the idea of Markechova to
quantum logics described in fuzzy set theory terms. This is the
subject of the present paper.

2. Fuzzy set approach to quantum logics

Def.1. By a guantum logic Cor simply a logic) throughout this
paper we mean partially ordered, orthocomplemented, o-orthocomple-
te orthomodular set, i.e. a partially ordered set L in which

Cid the least element O and the greatest element I exist,
Ciid the orthocomplementation map *:L-->L, such that a’’'= a,
ava’=l, and a<bxab’< a’ is admitted,

Ciiid> the least upper bound V_‘a_L of any sequence of elements

Q. a,a.,... such that a< a’ for i#®j exists, and
L 3

Civd the orthomodular identity a £ b = b = a v Ca’A &) holds.

We would like to warn the reader accustomed to the fuzzy set
notation that throughout this paper avdb and aad denote,
respectively, the least upper bound Cjoin) and the greatest lower
bound (meet) of elements a,b = L with respect to the given partial

order < and that they de not denote Zadeh’s max and min fuzzy
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connectives.

Def.2. By a probability measure on a logic L we mean a map
m :L—>[0,11 such that mCI> = 1 and mC V,tat) = ztmc a_L)' for any
sequence of elements Ao, such that atS aj’ for i=j. A set

S of probability measures on L is called full iff mCadEm(bd for
all m € $ implies a<b.

Elements of a logic are usually called propositions or
properties or yes—no observables and it is assumed that they
represent properties of a physical system. Probability measures on
a logic represent states of a physical system and therefore they
are usually called states on a logic. If a is a proposition and m
is a state then the number mCad e [0,1]1 is interpreted as the
probability of obtaining a positive result in an experiment
testing a property of a physical system represented by a when this
system is in the state represented by m.

Since for any proposition a and for any state m the number mCad
belongs to the unit interval, states can be treated as fuzzy
subsets of an universum L, and conversely, propositions can be
treated as fuzzy subsets of an universum S. This second
possibility allows us to pass to the fuzzy set theory with the aid
of the following theorem of Maczyrski [12,131.

Theorem. 1. (Maczyriski [12], proof in [131D.

cid If L is a logic with a full set of probability measures S,
then each a € L induces a function a:L—>[0,1] where almd=mCa> for
all m € S. The set of all such functions L = {a :a € L > satisfies
the following condition :

Orthogonality Postulate: If a2 .. is a sequence of functions
such that a -+ éjS 1 for imj, then there exists b e L such that
b+a+a+...=1.

= i S

L equipped with the natural partial order : a £ b iff almd < bm

for all m € S and complementation a’= 1-a is isomorphic to L.

Cii> Conversely, if L & [0,1]x is a set of functions in which the
Orthogonality Postulate is satisfied then it is a logic with
respect to the natural partial order and complementation. Every
point x € X induces a probability measure m_ on L where meQD =alx

for all a € L and the set {m,x : X € X> is full.

Thanks to this theorem we see that any logic L with a full set
of states S is isomorphic to a family £ of fuzzy subsets of S
equi pped with the standard fuzzy set inclusion and
complementation, and such that membership functions of elements of
£ satisfy the Orthogonality Postulate.

The Orthogonality Postulate can be expressed with the aid of
Giles’® bold union A WUB

’UAUB CxD = minC pACx) + pBCxD. 1>, cid

bold intersection AMB

(x> = max(C O, x> + ,uBCxD -1 3, 20

HA

and the notion of weakly disjoint sets [14]

HAa B
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A and B are weakly disjoint iff A MB = 0O 3
in the following way [10,111]:

Fuzzy Orthogonality Postulate: If Ag'Az"" is a sequence of
pairwise weakly disjoint sets, then 21 Ha. < 1 and there exists

B such that B = C i‘Ai.)’.

Let us note that if An’Az"" are pairwise weakly disjoint,
equalities (15, (2>, and C3) imply that
H A = L Ky c4>
Ui. L L :

Def 3. By a fuzzy quantum logic we mean any family L{XD of fuzzy
subsets of an universum X in which the Fuzzy Orthogonality
Postulate holds.

Let us note that the notion of a fuzzy quantum logic defined
above would coincide with the notion of a statistical o-algebra of
Guz [9) if only first four axioms listed in (9] were adopted.
Therefore, the notion of a fuzzy quantum logic is a little more
general than the notion of a statistical o-algebra.

By the part (iid of the Maczyriski Theorem any fuzzy quantum
logic is a traditional quantum logic in which the partial order
is given by the standard fuzzy set inclusion

A cBiff for all xeX ,uACx) < uBCxD €5

and orthocomplementattior is given by the standard fuzzy set
negation

B

A’ iff for all xeX pBCxD =1 - CxD. ced

'\
By the part (i) of this theorem any traditional quantum logic with
a full set of probability measures is isomorphic to a fuzzy
quantum logic. The whole universum X and the empty set 9 are,
respectively, the greatest and the least element of a fuzzy
quantum logic LCXD and we can express the definition of a
probability measure (stated on a fuzzy quantum logic in fuzzy set
terms in the following way

Def. 4. By a probability measure (state) on a fuzzy quantum logic
LCXD we mean a mapping m:LCXD—>[0,13 such that mCXd>=1 and
mC ULAL) = :.mCAL) for any sequence of weakly disjoint sets.

Let us note, that by the very definition and by the Maczyrhski
Theorem any fuzzy quantum logic LCX) admits a full set of
probability measures induced by points xeX with the aid of the
following formula

meA) = pACx.) for all A € LCYO. <7

However, generally, there can exist probability measures on a
fuzzy gquantum logic which are not induced by points of the
universum X. For example if all membership functions of elements
of a fuzzy quantum logic LCXD are integrable on the set X and if
we define

mCAY = ef p COdx  where ¢ = C f 1dx >t c8d

then mCXD>=1 and from the formula (40 it follows that
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mC ULAi.D = cfxCEL;uA.LCx)Ddx = ELmCAi.). CaO

for any sequence of pairwise weakly disjoint sets, therefore
m: LCXD—>{0,11 is a probability measure on LCXD.

Example 1. The most standard example of a fuzzy quantum logic can
be obtained via the Maczyriski Theorem from the traditional quantum
logic of projectors on a Hilbert space ¥. Let P(%) be such a logic
and let SC(¥D denote the set of all density matrices on %. The
family LCSD of all fuzzy subsets of 3SC(%, the membership
functions of which are defined by

H L) = TrCpP) for all peSCIO C10D
>

where Pel(3) denctes the fuzzy subset of S(¥) generated by the
projector PeP(HD, is a fuzzy quantum logic isomorphic to PCID.
Probability measures on L(S) generated by density matrices are of
the form

mp: LCsH)—>10,11, mpCJ’) = TrCpPD). 11>

Example 2. Let X be a topological space and let RB(XD be the
Boolean algebra of Borel subsets of X. B(X) is a fuzzy quantum
logic in which all elements are crisp and all traditional

probability measures on 2R(X) are states in the sense of the
Definition 4.

3. Fuzzy quantum dynamical systems

The definition of a fuzzy quantum dynamical system adopted here
is essentially the same as the definiton given by Markechova in
(2) with the only difference that the notions of F-quantum space
and F-state are replaced, respectively, by the notions of a fuzzy
quantum logic and a state on such logic.

Def. 5. By a fuzzy guantum dynamical system C(FQDS) we mean a
quadruple C(X,LC(XD,m,UD where LCXD is a fuzzy quantum logic, m is a
state on L(XD) and U 4is a o-homomorphism (i.e. a mapping
U: LXD —>LCXD such that W@ =0, UCA’D>=UCAD’ and UCVi‘At)=ViUCAi’)

fulfilling the following condition
mCUCADD = mCAD for all A e LCXD. 12

The notion of a fuzzy quantum dynamical system is non-void
since any quadruple (X,L{(X>,m,I> where I is an identity mapping is
a FQDS. We shall call such FQDS a trivial one. The following
example shows that there exist fuzzy quantum dtnamical systems
which are not trivial.

Example 3. Let X=[0,1] and let LC(XD = (B,A,A’',X>, where pACxD=x.

be the four-element fuzzy quantum logic. Any point xeX induces a
probability measure on L(XD by the equality (70 and the mapping
U: LXD = LCXD defined by U@ =@, UCXD=X, UCAD=A’, UCA’D>=A is a
homomorphism of LCXD onto L(XD. It is easy to notice that the

quadruple (X,LC(XD,m,UD is a FQDS if and only if x=1.2 and that it
is not a trivial one.

Example 4. Let X and BC(XD be as in Example 2 and let CX,B8CX),u, D
be a dynamical system in the sense of the classical probability

theory [3). Then C(X,LC(XD,u,TD is a fuzzy quantum dynamical system
as well.

Dynamics described with the aid of fuzzy quantum dynamical
systems can be viewed as the Heisenberg picture since homomorphism
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U acts on propositions, not on states.

Let us finish with a version of Poincare Recurrence Theorem.
This theorem already exists in the literature 1in various
approaches: the classical one (see, for example, [3]), the quantum
logic approach [185]1 and in the F-quantum space approach [18&].
Proofs are based on the same idea expressed, respectively, in
terms of suitable standard or non-standard probability measures.

Theorem 2. Let (X,LCXD,m,UD be a fuzzy quantum dynamical system
such that LCX) is a lattice. Then for all A € LCXD we have

mCA,\CVUA)) = 0. €13
Proof. Let B = A A CVUAD’ We shall prove first that B, UB,
UZB.. .. are pairwise weakly disjoint. Actually, if k=1, then
UB = U'CA & CV,U'A ) = AcU*A & UM €14
while .
CUBY' = CUA A cV U = veu'ar o U, 18>
Thus, we see that
UB = cu'm>* 31>
which means. that ]
Hikg <1 - Kty 17>
or, equivalently,
“UkB + “UlB -1 =0 c1sd

and therefore, from C(2) and (3), we conciude that UkB and UB are
weakly disjoint. Now. since probability measures on fuzzy quantum
logics are additive on weakly disjoint se.s and the homomorphism U
is m-invariant, we can apply the standard argumentation: since

mCVi_UB) = ;mCUBD = z“imCB) <1, 19D
we conclude that mCB) = O.

Acknowl edgments

The author is greatly indabtad to Dr Dagmar Markechova for
providing him with the manuscript of [2)]. Financial support of

Polish Ministry of Higher Education (Project Nr. RP I 100 is
gratefully acknowledged.

References

€11l Beltrametti, E.G. and Cassinelli, G. The Logic of Quantum
Mechanics, Addison-Wesley, Reading 1981.

(21 Markechova, D. Homomorphism and conjugation of fuzzy
dynamical systems, submitted to BUSEFAL.

(3] Fomin, S.W., Kornfeld, I.P. and Sinaj, J.G. Ergodic Theory,
Nauka, Moscow, 18680 Cin Russian).

[4] Riedan, B. A new approach to some notions of statistical
quantum mechanics, BUSEFAL, 35 C1988), 4-6.

[5] Piasecki, K. Probability of fuzzy events defined as denume-

rable additivity measure, Fuzzy Sets and Systems, 17 (1985,
271 -284.



167

(6] 2Zadeh, L.A. Fuzzy sets, Information and Control, 8 C1965),
338-353.

(7] Pykacz, J. Quantum logics and soft fuzzy prébability spaces,
BUSEFAL, 32 C1987), 150-157.

(8] Pykacz, J. Quantum physics, fuzzy sets and the problem of
connectives, to be published in the Proceedings of the
International Meeting on Fuzzy Set Theory, Poznan, September
1988, J. Albrycht and K. Piasecki, eds.

{9l Guz, W. Fuzzy o algebras of physics, International Journal
of Theoretical Physics, 24 C1985), 481 -403.
{101 Pykacz, 7J. Quantum logics as families of fuzzy subsets of

the set of physical states, Preprints of the Second IFSA
Congress, Tokyo, July 20-25 1987, vol. 2, 437-440.

(11] Pykacz, J. Probability measures in the fuzzy set approach to
quantum logics, in : Proceedings of the First Winter School
on Measure Theory, Liptovsky Jan, January 10-15, 1988. A.
Dvurecenskij and S. Pulmannova, eds. Bratislava, 1088.

(12] Maczyrhski, M.J. The orthogonality postulate in axiomatic
quantum mechanics, Int. J. Th. Phys. 8 C1873), 353-360.
{131 Maczyriski, M.J. Functional properties of quantum logics,

Int. J. Th. Phys. 11 €1984), 149-1586.

{141 Giles, R. Lukasiewicz logic and fuzzy set theory, Int. J.
Man-Machine Studies, 8 C1976), 313-327.

18] Dvurecdenskij, A. On some properties of transformations of a
logic, Mathematica Slovaca, 26 C1976), 131-137.

181 Dvuredenskij, A. and Tirpakova, A. Ergodic'theory on fuzzy
quantum spaces. to be published in the Proceedings of the
International Meeting on Fuzzy Set Theory, Poznaxd, September
1988, J. Albrycht and K. Piasecki, eds.



