On the Variance of a Fuzzy Random Variable **

Li Shoumei
Department of Mathematics

Hebei University

Baoding, Hebei, China

In this paper, we shall introduce the concept of the variance of a fuzzy random variable based on [3, 4], and give formulas to calculus of the expected value and the variance of a fuzzy random variable taking in $\mathcal{F}(R^{'})$.

Keywords: Fuzzy random variable, The expectation and variance of a fuzzy random variable

L.P.Madeh [3] introduced the concept of a fuzzy random variable and studied the expectation of it by using random variables set theory [1, 2, 5]. Li [4] further discussed the properties of fuzzy random variables. We shall investigate the variance of a fuzzy random variable based on [3, 4] as follows.

Let (Ω, \mathcal{A}, P) be a probability space where P is a nonatomic probability measure, R^n n-dimensional Euclidean space, \mathcal{B} the set of all Borel subsets of R^n and $K_O(R^n)$ the set of all nonempty compact subsets of R^n .

<u>Definition 1</u> [4] A fuzzy subset u: $\mathbb{R}^{\frac{1}{2}}$ [0, 1] is called a fuzzy number, if

- (1) $\forall \lambda \in (0, 1], u_{\lambda} \triangleq \{x \in \mathbb{R}^{1} : u(x) \neq \lambda\}$ is a closed_interval;
- (2) $u_1 \triangleq \{x \in R^1 : u(x) = 1\} + \phi$.

A Fuzzy subset u: $R^n \longrightarrow [0, 1]$ is called an extended fuzzy number,

^{**} This term is supported by NNSFC.

if

- (1) $\forall \alpha \in (0, 1], u_{\alpha} \triangleq \{x \in \mathbb{R}^n : u(x) \Rightarrow \alpha\}$ is compact;
- (2) $u_1 = \{x \in \mathbb{R}^n : u(x) = 1\} + \phi$.

 $\mathcal{F}_*(\textbf{R}^n)$ denotes the set of all extended fuzzy numbers, and $\mathcal{F}(\textbf{R}^1)$ the set of all fuzzy numbers.

Definition 2 [3] A fuzzy random variable is a function X: $\Omega \longrightarrow \mathcal{F}_{a}(\mathbb{R}^{n})$ such that

 $\{(w, x): x \in X_{a}(w)\} \in \mathscr{A} \times \mathscr{B} \quad \text{, for every } a \in (0, 1]$ where $X_{a}(w) = \{x \in \mathbb{R}^{n}: X(w)(x) \geq a\}$.

The equivalent definition of a fuzzy random variable was given in [4] .

Property 1 [4] X is a fuzzy random variable if and only if for every $\lambda \in [0, 1]$, for every $\lambda \in \mathcal{B}_0(K_0)$,

$$\{ w \in \Omega : X_{\alpha}(w) \cap A \neq \emptyset \} \in \mathcal{A}$$

where $\mathfrak{B}(K_0)$ denotes the set of all Borel σ -algebras of subsets of $K_0(\mathbb{R}^n)$.

Property 2 [4] Let X_i be a fuzzy random variable, and $a_i \in \mathbb{R}^1$, $i = 1, \dots, m$. Then the both $\sum_{i=1}^{m} a_i X_i$ and $\prod_{i=1}^{m} X_i$ are fuzzy random variables, and for every $x \in [0, 1]$

$$\left(\sum_{i=1}^{m} a_i X_i\right)_{\alpha} = \sum_{i=1}^{m} a_i \left(X_i\right)_{\alpha}, \quad \left(\prod_{i=1}^{m} X_i\right)_{\alpha} = \prod_{i=1}^{m} \left(X_i\right)_{\alpha}.$$

Definition 3 [3] The expected value of the fuzzy random variable of X, denoted by E(X), is the extended number $v \in \mathcal{F}(\mathbb{R}^n)$ such that

 $\mathbb{V}_{\alpha} = \left\{ \exists (f) \colon f \text{ is a P-integral section of } \mathbb{X}_{\alpha} \right\} \triangleq \exists (\mathbb{X}_{\alpha}),$ for every $\exists \in [0, 1]$.

Now we define the variance of X as follows.

<u>Definition 4</u> Let X^2 be integrably bounded [3], $E((X-E(X))^2)$ is called the variance of X, denoted by $D^2(X)$.

The existent and uniquesness of $D^2(X)$ can be obtained by property 2 and theorem 3.1 in [3].

In general case, the computations of the expected value and variance of X are complex just as L.P.Madeh pointed out. The following we limit a fuzzy random variable to taking in $\mathcal{F}(\mathbb{R}^1)$. Theorem: Let X^2 be integrably bounded, then we have

$$D^{2}(X) = E(X^{2}) - (E(X))^{2}$$
.

Proof: We first prove the property:

$$\mathbb{E}(\mathbb{X}_1 + \mathbb{X}_2) = \mathbb{E}(\mathbb{X}_1) + \mathbb{E}(\mathbb{X}_2)$$

where X_i is any fuzzy random variable, i = 1, 2.

Let $(X_i)_{\alpha}(w) = [a_i(w, \alpha), b_i(w, \alpha)]$, for every $\alpha \in (0, 1]$ and for every $\alpha \in \Omega$, $\alpha \in (0, 1]$ and for every $\alpha \in \Omega$, $\alpha \in (0, 1]$ and for every $\alpha \in \Omega$, $\alpha \in (0, 1]$ and for every $\alpha \in \Omega$, $\alpha \in (0, 1]$ and for every $\alpha \in \Omega$, $\alpha \in (0, 1]$ and for every $\alpha \in \Omega$, $\alpha \in (0, 1]$ and for every $\alpha \in \Omega$, $\alpha \in (0, 1]$ and for every $\alpha \in \Omega$, $\alpha \in (0, 1]$ and for every $\alpha \in \Omega$, $\alpha \in \Omega$, $\alpha \in (0, 1]$ and for every $\alpha \in \Omega$, $\alpha \in \Omega$,

For some $d \in (0, 1]$, let

$$\min (X_i)_{\alpha} : \Omega \rightarrow \mathbb{R}^1$$

$$w \mapsto \min(X_i)_{\alpha}(w) = a_i(w, \lambda)$$
.

For every c R¹,

where Q is the set of all ratinal numbers.

We have $\{w: \min(X_i)_{\alpha} < c\} \in A$ according to the equivalent definition of a fuzzy random variable, a.e. the function $\min(X_i)_{\alpha}$ measurable about B. Then $\min(X_i)_{\alpha}$ is a P-integrable section of

 $(Y_i)_{d}$ because of $a_i(w, d) \in [a_i(w, d), b_i(w, d)]$.

Similarly, the function

$$\max (X_{i})_{x} : \Omega \longrightarrow R^{1}$$

$$W \longmapsto \max (X_{i})_{x}(w) = b_{i}(w,x)$$

is also P-integral section of $(X_i)_{x}$.

It is obvious that for every P-integral section f of (Xi), we

have
$$\mathbb{E}(\min(X_i)_{d}) \leq \mathbb{E}(f) \leq \mathbb{E}(\max(X_i)_{d})$$
. So we can obtain:

$$E((X_i)_{\alpha}) = [E(\min(X_i)_{\alpha}), E(\max(X_i)_{\alpha})]$$
$$= [E(a_i(W, d)), E(b_i(W, d))]$$

then

$$(\Xi(X_{1}) + \Xi(X_{2}))_{\alpha} = (\Xi(X_{1}))_{\alpha} + (\Xi(X_{2}))_{\alpha}$$

$$= [\Xi(a_{1}(w, \alpha)) \ \Xi(b_{1}(w, \alpha))]$$

$$+ [\Xi(a_{2}(w, \alpha)), \ \Xi(b_{2}(w, \alpha))]$$

$$= [\Xi(a_{1}(w, \alpha)) + \Xi(a_{2}(w, \alpha)), \ \Xi(b_{1}(w, \alpha))$$

$$+ \Xi(b_{2}(w, \alpha))]$$

$$= [\Xi(a_{1}(w, \alpha) + a_{2}(w, \alpha)), \ \Xi(b_{1}(w, \alpha) + b_{2}(w, \alpha))]$$

$$= (\Xi(X_{1} + X_{2}))_{\alpha}$$

Similarly, we have $E(\Delta X) = \Delta E(X)$, for every $\Delta \in \mathbb{R}^{1}$. Then

$$D(X^{2}) = E((X-E(X)^{2})$$

$$= E(X^{2} - 2E(X)X + (E(X))^{2})$$

$$= E(X^{2}) - 2E(X) E(X) + (E(X))^{2}$$

$$= E(X^{2}) - (E(X))^{2}$$

By the proof of the theorem, we know, if $X_{\prec}(W) = [a(W, \prec), b(W, \prec)]$ then

$$\Xi(X) = \bigcup_{A \in \{0,1\}} A \cdot \left[\Xi(a(w, d)), \Delta(b(w, d))\right]$$

and

$$(E(X))^{2} = \bigcup_{d \in (0,1]} d [E(a(w,d)), E(b(w,d))]^{2}$$
$$= \bigcup_{d \in (0,1]} d[a'(d), b'(d)]$$

according to L.A.Zadeh s extension principle. Where

$$a'(x) = \min \left\{ \mathbb{E}^{2}(a(w, x)), \mathbb{E}(a(w, x)) \cdot \mathbb{E}(b(w, x), \mathbb{E}^{2}(b(w, x)) \right\}$$
$$= \max \left\{ \mathbb{E}^{2}(a(w, x)), \mathbb{E}(a(w, x)) \cdot \mathbb{E}(b(w, x), \mathbb{E}^{2}(b(w, x)) \right\}.$$

In the similar way, we have

$$(X^{2}(w))_{\alpha} = (X_{\alpha}(w))^{2} = [\widetilde{a}(w, \alpha), \widetilde{b}(w, \alpha)]$$

where

$$\widetilde{a}(W, \lambda) = \min \left\{ a^2(W, \lambda), a(W, \lambda) \cdot b(W, \lambda), b^2(W, \lambda) \right\}$$

$$\widetilde{b}(W, \lambda) = \max \left\{ a^2(W, \lambda), a(W, \lambda) \cdot b(W, \lambda), b^2(W, \lambda) \right\}$$

then

$$E((X_{a})^{2}) = E((X^{2})_{a})$$
$$= [E(\widetilde{a}(W, a)), E(b(W, a))]$$

So we have

$$D^{2}(X) = \bigcup_{\mathbf{d} \in (0,1]} \mathbf{d} \cdot \left[\mathbb{E}(\widetilde{\mathbf{a}}(\mathbf{w}, \mathbf{d})) - \mathbf{b}'(\mathbf{d}), \quad \mathbb{E}(\widetilde{\mathbf{b}}(\mathbf{w}, \mathbf{d})) - \mathbf{a}'(\mathbf{d}) \right]$$

Note: In general case, the above-proved theorem is incorrect.

References

- [1] C.L.Byren, Remarks on the set-valued integrals of Debeu and Aumann, J. Math. Anal. Appl. 62(1978) 243-246.
- [2] E.Klein and A.C.Thompson, Theory of correspondence, A Wiely-Interscience Publication, 1984.
- [3] L.P.Madeh and D.A.Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114(1986) 409-422.
- [4] Li Shoumei, Further discussions on the fuzzy random variables, (Submit to the Third IFSS Congress) (1988).
- [5] R.J.Auman, Integrals of set-valued functions. J. Math. Anal. Appl. 12(1965) 1-12.