BAYES PRINCIPLE AND FUZZY DISJOINTNESS

Radko MESIAR, Department of Mathematics, Slovak Technical University, Radlinského 11, 813 68 Bratislava, Czechoslovakia Krzysztof PIASECKI, Department of Mathematics, Academy of Economics, u. Marchlewskiego 146/150, 60-967 Poznaň, Poland

ABSTRACT

The Bayes principle is connected with the notion of disjointness. In so far published papers devoted to the Bayes principle for fuzzy probability measures (see e.g. [3, 4, 6]), an apriori definition of the fuzzy disjointness is proposed and then the Bayes principle is studied. So in [3, 4] is defined the W-disjointness of two fuzzy subsets $[w, \gamma]$ by fulfilling of the inequality $[w, \zeta] = 1 - \gamma$. Similarly, in [6] is defined the F-disjointness of $[w, \gamma]$ by fulfilling of the inequality $[w, \gamma] \leq 1/2$.

In the present paper we use reversal approach. Having given a fuzzy probability measure m, we study a family K_m consisting of all fuzzy set systems for which the Bayes formula holds, firstly. Our result leads to a new natural definition of fuzzy disjointness, namely to the m-disjointness. Two fuzzy subsets M, Υ are m-disjoint iff $m(M\Lambda\Upsilon) = 0$. The paper generalize the results of [3, 4, 6].

1. BAYES PRINCIPLE IN THE CRISP CASE

Let (Ω, \mathcal{A}, P) be a crisp probability space. Let $B \in \mathcal{A}$ be a crisp subset of Ω . Then the conditional probability given B is defined as follows:

$$\forall A \in \mathcal{L} : P(A/B) = \frac{P(A \cap B)}{P(B)}$$
 for $P(B) > 0$,

$$P(A/B) = 0$$
 for $P(B) = 0$.

Let $A_1 \in \mathcal{L}$, $i = 1, \ldots, k$, be crisp subsets of Ω . Any system $\mathcal{H} = \{A_1, \ldots, A_k\} \text{ induces a partition } \mathcal{B}_{\mathcal{A}} \text{ of the space } \Omega,$ $\mathcal{B}_{\mathcal{A}} = \{B_{\mathcal{A}}, \chi \in \{-1, 1\}^k\} \text{ , where }$

$$B_{\chi} = \bigcap_{i=1}^{k} A_{i}^{\chi(i)} , A_{i}^{1} = A_{i}, A_{i}^{-1} = A_{i}^{\prime} \text{ (complement of } A_{i}).$$

Clearly, some of the subsets By can be empty. The subsets By of the system B_A are pairwise disjoint. Let $B \in \{-1, 1\}^k$ and $C \in J$, P(C) > 0, be given. Then the Bayes formula has the following form:

$$P(B_{\beta}/C) = \frac{P(B_{\beta})P(C/B_{\beta})}{\sum_{\beta,\alpha} P(B_{\beta})P(C/B_{\beta})}$$
(1)

The Bayes formula (1) is equivalent to the formula for total probability, i.e. for any CEL

$$P(C) = \sum_{\mathcal{B}_{\mathcal{A}}} P(B_{\mathcal{X}} \cap C) \qquad (2)$$

It can be easily proved by induction that (2) is satisfied for arbitrary system \mathcal{A} iff (2) is satisfied for arbitrary one-element system \mathcal{A} , i.e.

$$\forall C, A \in \mathcal{L} : P(C) = P(C \cap A) + P(C \cap A')$$
 (3)

Note that $\mathcal{B}_{\{A\}} = \{A, A'\}$. So in the crisp case we have the following evident assertion:

A system $\mathcal{A} = \{A_1, \dots, A_k\}$ fulfilles the Bayes principle (i.e. (1) or (2)) iff $A_i \in K_p$, $i = 1, \dots, k$, $K_p = \{A \in \mathcal{A}, \forall C \in \mathcal{L} : P(C) = P(C \cap A) + P(C \cap A')\}$. In the crisp case we have $K_p = \mathcal{L}$.

2. BAYES PRINCIPLE IN THE FUZZY CASE

Now let (Ω, σ, m) be a fuzzy probability space in sense of Klement et al. [2]. We modify the ideas of the first part

of this paper for the fuzzy case. Recall that a fuzzy probability measure on a fuzzy \mathfrak{S} -algebra \mathfrak{S} is in [2] defined as a continuous from below mapping $\mathfrak{m}: \mathfrak{S} \longrightarrow [0, 1]$ fulfilling two next properties:

$$m(O_{\Omega}) = 0$$
 and $m(I_{\Omega}) = 1$ (4)

 $\forall m, \forall \in \mathcal{E}$: $m(m \vee \gamma) + m(m \wedge \gamma) = m(m) + m(\gamma)_{\circ}(4')$ Let $\gamma \in \mathcal{E}$ be a fuzzy subset of Ω . The conditional fuzzy probability given γ is defined as follows (see e.g. [3]):

$$\forall \mu \in G : c(\mu/\gamma, m) = \frac{m(\mu/\gamma)}{m(\gamma)}$$
 for $m(\gamma) > 0$,

$$c(M/Y,m) = 0$$
 for $m(Y) = 0$.

Any given system $A = \{\mu_1, \dots, \mu_k\} \in \mathcal{S}^k$, $k \in \mathbb{N}$, of fuzzy subsets induces a fuzzy partition \mathcal{B}_A of Ω ,

$$\mathcal{B}_{\mathcal{A}} = \{ \gamma_{\mathcal{X}}, \gamma_{\mathcal{L}} \in \{-1, 1\}^k \}$$
, where

$$\sqrt{\chi} = \bigwedge_{i=1}^{k} \chi_{i}^{\chi(i)}$$
, $\chi^{1} = \chi_{i}$, $\chi^{-1} = \chi_{i}^{*}$ (fuzzy com-

plement of M) .

The validity of the fuzzy Bayes formula

$$\forall \gamma \in \mathbb{C}$$
, $m(\gamma) > 0$, $\beta \in \{-1, 1\}^k$:

$$c(\gamma_3/\gamma_3,m) = \frac{m(\gamma_3)c(\gamma/\gamma_3,m)}{\sum_{m} m(\gamma_{k})c(\gamma/\gamma_{k},m)}$$
(5)

is equivalent to the validity of the next formula:

$$\forall \eta \in \mathcal{C}: \ m(\eta) = \sum_{\mathcal{B}_{\mathcal{A}}} m(\eta \wedge \forall \chi) \quad . \tag{6}$$

Denote $K_m = \{ M \in G : M(\eta) = M(\eta \wedge M) + M(\eta \wedge M) \}$.

Lemma 1. Let a system $A = \{w_1, \dots, w_k\} \in K_m^k, k \in \mathbb{N}$, be given. Then formulas (5) and (6) hold.

Proof. It is enough to prove (6). Let $m \in \mathbb{R}$ be given. If k = 1, i.e. $\mathcal{R} = \{u_n\}$, then $\mathcal{B}_{\mathcal{A}} = \{u_n\}$ and the definition of K_m

implies the validity of (6). If k > 1, we proceed by induction. Suppose that for all systems of K_m^{k-1} the formula (6) is true. Denote $\mathcal{A}^* = \{\mu_1, \dots, \mu_{k-1}\}$. Then $\forall \chi \in \mathcal{B}_{\mathcal{A}}: \forall \chi = \forall \chi \in \mathcal{A}_k^{\chi(k)}$, $\chi \in \{-1, 1\}^k$, $\chi(i) = \chi(i)$, $i = 1, \dots, k-1$, $\forall \chi \in \mathcal{B}_{\mathcal{A}^*}$.

The definition of K_m implies

$$m(\eta) = m(\eta \wedge \mu_k) + m(\eta \wedge \mu_k)$$
.

On the other hand,

$$\tilde{m}(\gamma \wedge \mu_k) = \sum_{k \neq k} m(\gamma \wedge \mu_k \wedge \gamma_{k*})$$

$$m(\gamma \wedge (M_{\underline{k}})) = \sum_{B_{\underline{k}} \times} m(\gamma \wedge M_{\underline{k}} \wedge Y_{\gamma} \times Y_{\alpha})$$

It follows

$$\mathbf{m}(\mathcal{D}) = \sum_{\mathbf{B}_{\mathcal{A}^{k}}} (\mathbf{m}(\mathcal{D}_{\mathcal{A}^{k}}) + \mathbf{m}(\mathcal{D}_{\mathcal{A}^{k}}) + \mathbf{m}(\mathcal{D}_{\mathcal{A}^{k}})) = \sum_{\mathbf{B}_{\mathcal{A}^{k}}} \mathbf{m}(\mathcal{D}_{\mathcal{A}^{k}}) \cdot \mathbf{m}(\mathcal{D}_{\mathcal{A}^{k}})$$

Lemma 2. Let $\mathcal{A} = \{ (u_1, \dots, (u_k) \in \mathbb{S}^k, k \in \mathbb{N}, \text{ be a given system of fuzzy subsets and let (5) or (6) hold. Then <math>(u_i \in K_m)$ i = 1,..., k. Moreover, for any $\chi \in \{-1, 1\}^k$, $\chi_{\chi} \in K_m$.

<u>Proof.</u> We can suppose that (6) holds. It is enough to prove $\binom{M_k \in K_m}{m}$. For k = 1 is this assertion evident. Let $\gamma \in \mathbb{C}$, k > 1. Then (6) implies

$$\begin{split} & m(\eta) = \sum_{\mathfrak{B}_{\mathcal{A}}} m(\eta \wedge \gamma_{\mathcal{X}}) \\ & m(\eta \wedge \mu_{\mathbf{k}}) = \sum_{\mathfrak{B}_{\mathcal{A}}} m(\eta \wedge \gamma_{\mathcal{X}} \wedge \mu_{\mathbf{k}}) = \sum_{\mathfrak{B}_{\mathcal{A}}} (m(\eta \wedge \gamma_{\mathcal{X}} \wedge \mu_{\mathbf{k}}) + m(\eta \wedge \gamma_{\mathcal{X}} \wedge \mu_{\mathbf{k}} \wedge \mu_{\mathbf{k}})) \\ & m(\eta \wedge \mu_{\mathbf{k}}) = \sum_{\mathfrak{B}_{\mathcal{A}}} m(\eta \wedge \gamma_{\mathcal{X}} \wedge \mu_{\mathbf{k}}) = \sum_{\mathfrak{B}_{\mathcal{A}}} (m(\eta \wedge \gamma_{\mathcal{X}} \wedge \mu_{\mathbf{k}}) + m(\eta \wedge \gamma_{\mathcal{X}} \wedge \mu_{\mathbf{k}} \wedge \mu_{\mathbf{k}})). \end{split}$$

It follows

$$m(\gamma \wedge m_k) + m(\gamma \wedge m_k) = m(\gamma) + m(\gamma \wedge m_k \wedge m_k) . \tag{7}$$

Now, take $\gamma_0 \in \mathcal{B}_A$. By (6) we have

$$m(V_3) = \sum_{\mathcal{B}_A} m(V_3 \wedge V_{3L}) = m(V_3) + \sum_{\mathcal{Y} \neq 0} m(V_3 \wedge V_{3L}) , \text{ so that}$$

$$m(\bigvee_{S} \bigwedge \bigvee_{Y}) = 0 \quad , \quad S \neq \chi$$
 (8)

For any χ denote χ' the k-tuple differing from χ only in the last coordinate. Then $\chi \neq \chi'$ and (8) implies

$$m(\gamma_{k} \wedge \mu_{k}) = m(\gamma_{k} \wedge \nu_{k}) = 0$$
.

Then

$$m(\mu_k \wedge \mu_k) = \sum m(\gamma_k \wedge \mu_k \wedge \mu_k) = 0 \qquad (9)$$

(9) together with (7) implies

$$m(\gamma) = m(\gamma \wedge \mu_k) + m(\gamma \wedge \mu_k)$$

so that $M_k \in K_m$.

Now, let $3 \in \{-1, 1\}^k$ be given. We have $(\bigvee_3)' \wedge \bigvee_2 = \bigvee_{x \neq 3} \text{ for } x \neq 3$, and $(\bigvee_3)' \wedge \bigvee_3 = \bigvee_{x \neq 3} (\bigvee_2 \wedge \bigvee_3)$,

what implies (together with (8))

$$m((Y_3)^i \wedge Y_3) \leq \sum_{\chi \neq 0} m(Y_{\chi} \wedge Y_{\chi}) = 0.$$

The validity of (6) leads to the following equality:

$$\forall \gamma \in G : m(\gamma) = \sum_{\mathcal{B}_{\mathcal{A}}} m(\gamma \wedge \gamma_{\mathcal{X}}) = m(\gamma \wedge \gamma_{\mathcal{G}}) + \sum_{\mathcal{X} \neq \mathcal{G}} m(\gamma \wedge \gamma_{\mathcal{X}}) =$$

$$= m(\gamma \wedge \gamma_3) + \sum_{\chi \neq 3} m(\gamma \wedge (\gamma_3)' \wedge \gamma_{\chi}) + m(\gamma \wedge (\gamma_3)' \wedge \gamma_3) =$$

$$= m(\gamma \wedge \gamma_3) + m(\gamma \wedge (\gamma_3)') .$$

So we have $Y_{\Delta} \in K_{m}$.

Lemmas 1, 2 imply that K_m is a system of all fuzzy subsets of $\mathbb G$ for which the Bayes principle (when the fuzzy probability measure m is taken into account) remains valid. The next proposition gives some other properties of the system K_m .

Proposition 1. Let m be a fuzzy probability measure in sense of Klement et al. Then:

- i) $M \in K_m$ iff m(MV(M)) = 1 and m(MA(M)) = 0
- ii) $K_{\rm m}$ is a soft fuzzy algebra, i.e. a fuzzy algebra not containing the fuzzy subset $(1/2)_{\Omega}$;

iii) if $\mathcal{T} \in \mathcal{G}$ is a sharpening of some $M \in K_m$, i.e. if $|\mathcal{T} - 1/2| \ge |M - 1/2|$ then $\mathcal{T} \in K_m$.

Further,

$$m(NVN') = m((NVN') \wedge N + m((NVN') \wedge N') =$$

$$= m(N) + m(N') = m(1_{\Omega} \wedge N) + m(1_{\Omega} \wedge N') = m(1_{\Omega}) = 1 .$$

Note that m on K_m has the complementation property $m(\mu^i) = 1 - m(\mu)$.

Conversely, let $m \in \mathbb{R}$, $m(m \land m') = 0$, $m(m \lor m') = 1$. Then for any $m \in \mathbb{R}$ we have (see e.g. [5])

 $m(\gamma) = m(\gamma \wedge (\mu \vee \mu \vee)) = m((\gamma \wedge \mu \vee) \vee (\gamma \wedge \mu \vee)) \quad \text{and} \quad m(\gamma \wedge (\mu \wedge \mu \vee)) = m((\mu \wedge \gamma \wedge \mu \vee)) \leq m(\mu \wedge \mu \vee) = 0 .$

The valuation property (4) then implies

$$m(\eta) = m((\gamma \Lambda \eta) \vee (\gamma \Lambda \mu^{i})) + m((\gamma \Lambda \mu) \wedge (\gamma \Lambda \mu^{i})) =$$

$$= m(\gamma \Lambda \mu) + m(\gamma \Lambda \mu^{i}) , i.e. \mu \in K_{m} .$$

ii) Let $M,Y \in K_m$. According to i) it is evident that $M',Y' \in K_m$. Further,

$$m((\mu \Lambda Y) \wedge (\mu \Lambda Y)') = m((\mu \Lambda Y \Lambda \mu') V (\mu \Lambda Y \Lambda Y')) \leq$$

$$\leq m(\mu \Lambda \mu') + m(Y \Lambda Y') = 0$$

and

 $m((M\Lambda\Upsilon)V(M\Lambda\Upsilon)') = m((MVM'VY')\Lambda(YVM'VY')) =$ = m(MVM'W') + m(YVM'VY') - m(MVYYM'YY') = 1,so that $M\Lambda\Upsilon \in K_m$.

Thus, the system K_m is a fuzzy algebra. Let $(1/2)_{\Omega} \in K_m$. Then i) implies $m((1/2)_{\Omega}) = 1$ and $m((1/2)_{\Omega}) = 0$ what is a contradiction. We get that K_m is a soft fuzzy algebra.

iii) If T is a sharpening of a $M \in K_m$, then $T \vee T' \geq M \vee M' \text{ and } T \wedge T' \leq M \wedge M' \text{ so that }$ $m(T \vee T') \geq m(M \vee M') = 1 \quad \text{and} \quad m(T \wedge T') \leq m(M \wedge M') = 0.$ It follows $T \in K_m$.

3. FUZZY DISJOINTNESS

Let $\mathcal{A} \in K_{m}^{k}$, $k \in \mathbb{N}$ be given and let \mathcal{B}_{A} be the corresponding fuzzy partition. As it is stated in part 2., the Bayes principle, actually (5) and (6), is true. However, \mathcal{B}_{A} can include some fuzzy subsets \mathcal{V}_{A} of measure zero, i.e. $m(\mathcal{V}_{A}) = 0$. Excluding such elements we obtain a system $\mathcal{C}_{A} = \{\mathcal{V}_{A} \in \mathcal{B}_{A}, m(\mathcal{V}_{A}) > 0\}$. For this new system (5) and (6), i.e. the Bayes principle, remains valid. System \mathcal{C}_{A} has the properties:

- (C1) \m, v ∈ EA, M ≠ V : m(MAY) = 0;
- (C2) m($\sup \gamma$) = 1; ξ_A
- (C3) ∀Y ∈ C_A : m(Y) > 0 .
- (C2) and (C3) are identical to (R2) and (R3) of the Piasecki's definition of a W-fuzzy Bayes partition (see e.g. [3]). Note that (R2) and (R3) are preserved in the definition of a F-fuzzy Bayes partition (see [6]) also. (R1), respectively (R1') property of mutual W-disjointness (F-disjointness) of a Bayes fuzzy partition corresponds to our (C1). Thus, one natural definition of disjointness of two fuzzy subsets can be as follows:

Definition. Let (Ω, σ, m) be a fuzzy probability space in sense of Klement et al., $M, Y \in \Gamma$. Then M, Y are m-disjoint iff m(MY) = 0.

Remark. Note that the m-disjointness on K_m is more general than the W-disjointness and the F-disjointness, respectively.

That means if \wedge , \vee \in K_m are W-(F-)disjoint, then they are m-disjoint. The reverse assertion may fail, see Example 1, part iii).

It is easy to see that m on K fulfils two following properties:

- (D1) for any $M \in K_m$ we have $m(M \setminus M^1) = 1$;
- (D2) for any sequence $\{\mathcal{M}_k\} \in K_m^N$, $\sup \{\mathcal{M}_k\} \in K_m$, satisfying the condition (C1) we have $m(\sup \{\mathcal{M}_k\}) = \sum m(\mathcal{M}_k)$.

(D1) is identical to (P1) of the Piasecki's definition of a fuzzy P-measure (see e.g. [3, 5]). (D2) corresponds to (P2) property of a fuzzy P-measure replacing the W-disjointness by the m-disjointness. The above remark implies that m is a fuzzy P-measure on $K_{\rm m}$.

Our results are summarized in the following general version of Piasecki's theorem on the Bayes formula for fuzzy probability measures.

Proposition 2. Let (Ω, \mathcal{T}, m) be a fuzzy probability space in sense of Klement et al., K_m be a system consisting of all fuzzy partitions of (Ω, \mathcal{T}) satisfying the Bayes formula on (Ω, \mathcal{T}, m) . Then m is a fuzzy P-measure on the soft fuzzy algebra K_m .

Example 1. Let Ω be the unit interval [0,1], σ = IF(B) be a generated fuzzy σ -algebra of all Borel-measurable fuzzy subsets of Ω , and λ be the Lebesque measure. Then

 $m(M) = \lambda (M c)$, where ce]0, 1[

is a fuzzy probability space in sense of Klement et al. Then

- i) if c < 1/2, then $K_m = \{ \text{meG}, \lambda(c < \text{m} < 1 c) = 0 \},$ $K_m \text{ is a soft fuzzy G-algebra ;}$
- ii) if $c \ge 1/2$, then $K_{m} = \{ \text{MeG}, \lambda (1 c \le \text{MeG}) = 0 \},$ $K_{m} \text{ is a soft fuzzy algebra but it is not a fuzzy}$ G-algebra;

Example 2. Let (Ω, d, P) be a crisp probability space, $G=\mathbb{F}(d)$ be a generated fuzzy G-algebra, $f, g \in G$, $\forall x \in \Omega$, $f(x) \neq g(x)$. We define a Markoff kernel K (for more details see e.g. [1]) letting $K(x, \cdot)$ be an uniform distribution on the interval [f(x), g(x)] for $x \in \Omega$. The relationship

 $m(n) = \int_{\Omega} K(x,[0,n(x)[)dP(x)), \text{ al. (see [1]). Then}$ defines a fuzzy probability measure in sense of Klement et

 $K_{m} = \left\{ \text{ MeG, } P(1/2 - h(x) < \text{M} < 1/2 + h(x)) = 0 \right.,$ where $h(x) = \max \left\{ |1/2 - f(x)|, |1/2 - g(x)| \right\}$. If $f = 0_{\Omega}$ and $g = 1_{\Omega}$, then m is the Zadeh's fuzzy probability measure $\begin{bmatrix} 7 \end{bmatrix}$ and $K_{m} = \lambda$, i.e. only the crisp partitions fulfils the Bayes principle.

REFERENCES

[1] E.P.Klement, Characterization of finite fuzzy measures using Markoff-kernels, J.Math.Anal.Appl.75 (1980) 330-339.

- [2] E.P.Klement, R.Lowen and W.Schwychle, Fuzzy probability measures, Fuzzy Sets and Systems 5 (1981) 21-39 .
- [3] K.Piasecki, On the Bayes formula for fuzzy probability measures, Fuzzy Sets and Systems 18 (1986) 183-185 .
- [4] K.Piasecki, Note to [3], Fuzzy Sets and Systems 24 (1987) 121-122.
- [5] K.Piasecki, Fuzzy P-measures and their application in decision making, in: M.Fedrizzi, j.Kacprzyk (eds.), Combining fuzzy imprecision with probabilistic uncertainty in decision making, Springer Ver., 1987.
- [6] K. Piasecki and Z. Świtalski, A remark on the definition of fuzzy P-measures and the Bayes formula, Fuzzy Sets and Systems 26 (1988).
- [7] L.A. Zadeh, Probability measures of fuzzy events, J.Math. Anal. Appl 23 (1968) 421-427.