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ABSTRACT

The Bayes principle is connected with the notion of dis-
Jointness., In so far published papers devoted to the Bayes
principie for fuzzy probability measures ( see e.g. [3, 4, 6] ),
an apriori definition of the fuzzy disjointness is proposed
and then the Bayes principle is studied. So in [3, 4] is de-—
fined the W-disjointness of two fuzzy subsetS(u,,W’ by ful-
£illing of the inequality (M & 1-Y . Sinilarly, in[6]1s
defined the F-disjointness of[“,,w’ by fulfilling of the ine=
quality mini(v.,y} < 1/2 .

In the present paper we use reversal approach, Having gi-
ven a fuzzy probability measure m, we study a family Km con-
sisting of all fuzzy set systems for which the Bayes formula
holds, firstly, Our result.lesds to a new natural definition
of fuzzy disjointness, namely to the m-disjointnesas. Two fuzzy
subsets(u.,w’ are m-disjoint iff m(pk/\\/) = 0 » The paper
generalize the results of [?, 4.6]o

1. BAYES PRINCIPLE IN THE CRISP CASE

Let (L2, 4., P) be a erisp probability space. Let B&d. be
a crisp subset of L2 , Then the conditional probability given
B is defined as follows:

Vaed: pap) = BEAAB) o pigy s o
| P(B)
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P(A/B) = Q for P(B) =0 &
Let Ayed, 1 = 1,000, k, be crisp subsets of {1 . Any system
f¥={A{,000, A T induces a purtition BDpof the space L1,
Bﬁ- 4B, ,%Li-l 1} } where

. -1, se
% n A’aL(i) , By = Ay, AT = A ( complement of Ay )o

Clearly, some of the subsets B«y, can be empty. The subsets B‘X’
of the system},are pairwise disjoint. Let Re{-1, 13¥ and
c&d, P(C)> 0, be given, Then the Bayes formula has the fol-

lowing form: ‘
P(Bg JP(C/By )
P(BR //c )“ = [ . (1)
- ZP(B3L YP(C/By )

The Bayes formula (1) is equivalent to the formula for total

probability, i.e. for any Ced
P(C) = ¥ P(By NC) o (2)
Ba
It can be easily proved by induction that (2) is satisfied
for arbitrary system A 4P (2) is satisfied for arbitrary

one-element system ./, i.e.

Y ¢, Aed : P(Q) = P(CNL) + P(CNA") (3)

Nete that B{A} = §4,4°%. So in the crisp case we have the fol-
lowing evident assertion:
& system A= {Ay,.00, A} fulfilles the Bayes principle
( ieew (1) or (2) ) iff A € K, , 1 = 1,40.y k,
Kp =3Aed , ¥Ced : PC) = P(CAA) + P(COA") }

In the crisp case we have KP =4 o

)

o BAYES PRINCIPLE IN THE FUZZY CAS
Now let (SL,s , m) be a fuzzy probuability space in sense

of Klemrnt et al, r:f:] o We modify the ideas of the {'irst part
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of this paper for the fuzzy case, Recall that a fuzzy probabi-
lity measure on a fuzzy &=-algebra® is in [2] defined as
a continuous from below mapping m:<5'—->[0 » l] fulfilling
two next properties:
m( 0,) =0 and m{ 1,) =1 (4)
VY €S 3 m(wVy ) + m(peAy ) = m(w) + m(v Jo(4)
Let VG be a fuzzy subset of £1. The conditional fuzzy pro=-
bability given vy is defined as tollows ( see e.g. [:3] ):

m{AY) for m(v') > 0,
m(y)

Q for m{v ) =0 .

-V(\,(, ok CK(‘A_/Y ,m)

i

cg(/vb/v yI)
Any given systemﬁ=§(u.l,..o,(\&.k%e ﬁ’k , ke N, of fuzzy sub-
sets induces a fuzzy partition Rgof{X,

Bas Svat.que{-l, 1€}, where

\(',31- _ [wz(i) R [w,l =fv_, {w-l/=/w' ( fuzzy com=

plement of W ) .
The: validity of the fuzzy Bayes formula
¥me& , m(m) > 0, B e §-1, 13"

m(yrs Jed™ /v, ,m)

ey, /™ ,u) = (5.)
A T m{vy de () /vy ym)
Ba
1s equivalent to the validity of the next formula:
¥med: mim) "Z m(’YL/\V},L) o (6)
Denote = SL(“_é(v,vn? e& = in(m ) = nlnAn) + m(mAM) T

1 P - - \ . ; - k .
Lamma 1. Let a sys\.emﬁ-{pkl,goop(wkgélim, k €N, be given,
Then formulas (5) ana (&) hold,

Proaf, It is enough to prove (6). Letm && be given, If k = 1,

‘ s
! e . ey ‘-\ - (s 3 »
Lodo S S(u' 3 then R\A Sl(u:',/u.,,r and the definition of K_
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implies the validity of (6) « If k> 1, we proceed by induction.

Suppose that for all systems of Kk"l the formula (6) is true.
% _ - 'Mk)

Denote ».& s{“l.ooo’ {\bk 1} ° 'BhenV"aCCBA- V}%

yef-1, 135, w@) =Ry, 1= Lyoeeskl, Vo€ By o

The: definition of Km implies

On the other hand,

nlmAM,) =37 mimAm, AVa) ,
mim AM gﬁ*m’?, M/ Yy
m(er/\.(u,k) =3 m(nz/\(\ti/\ch“) .
3’3&*
It follows
m(m ) = gm(m(ﬁl/\‘wnx‘/\(\tk) + m("l'\ch"A{“'l;)) =;%Z n(MAYY .
A

Lemma 2, Let A =§ (W1res=s [""k}cs , k&N, be a given sys-
tem of fuzzy subsets and let (5) or (6) hold. Then (\&iéK

i=1,0ee, k o Moreover, for eny e i-l, l}k on_é Kn
Proof, We can suppbse that (6) holds. It is enough to prove
/\4.}(6 Km e For k =1 is this assertion evident. Let mER,
k >1 . Then (6) implies
m(m A peyS = 5, " Vahpu) = (mlepvghg) + aumgngAu),
¢ - P - 5 1
m(f'z A (“"k:) -;L;ﬂ m(nz/\v%/\ ™ K’ -%ﬂ;m(rvz/w}tﬁ/\m) + m(nl/\VgL*A(ﬂ-kAMl).
It follows
m(mAM) * M AME) = nlim) + aqArmAK) . (1)
Now, take YQG.BA. By (6) we have

m(V,) = Z m(v AN = m(Y,B) + T m(vrsAV')t) » So that
Bp ¥

n(VaAVy) =0, Afx (8)
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For any denote )L the k-tuple differing from y only
in the last coordinate. Then )t # +° and (8) implies
m(‘v,%/\(wk/\/u};) = m{YyAvg) =0,
Then .
m( M Amy) = = m(y_}t/\/nk/\(w};) =0 o (9)

(9) togethér with (7) implies
m(m ) = m(“’l/\(“k) + m("l/\(vt,;()‘- '
so that (Kkexm" : '
Now, let B&{-1, 13¥ be given. We have
(ViyAYy =V for (AR , and(vy)AV= ;{recw/\vﬂ .

what implies (together with (8))
The validity of (6) leads to the following equality:

¥mes: m(m) = E m(nAv) = oAV, )+ 3 mim ANy
Ba ' T+

m(mAvy ) + %{5 m<"'l/\<Vr55'/\\(¥) + m(ﬂz/\(vfs)'.’\v,l) =

m(MAY, ) * m(’*)/\(\(@)‘) o

fond Y,
So we have Y,BE ‘(m o

Lemmas 1, 2 imply that Km igs a system of all fuzzy subsets
of & for which the Bayes principle ( when the fuzzy probabi-
lity measure m is taken into account ) remains valid., The next

proposition gives some other properiies of the system Kmo

Proposition 1, Let m be a fuzzy probabtility measure: in semse

of Klement et al., Then:
1) acek iff m(evm') =1 and m(AMAM) =0 ¢
ii) Koy is a sof't fuzzy algebra, i.e. a fuzzy algebrs not

L3

containing the fuzzy subset (1/27q
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1i1) if Tea is a sharpening of some(w. eKm, jeeo if
1T - 1/212 |Mm~1/2] thenT e K

Proof, i) Let(u. € K . Then (6) implies

m(m) = m(pAm) + m((w/\(w') = mlw) + m(/u./\/“-') , 80 that

m ( fw/\(\t) =0,
Further,

m(MVpM) = m((V DA + m((W VAR =

= m(M) + m(M) = m(1pAM) + m(ly M) =mlg) =1 .
Note that m on Km has the complementation property

m((v.'5 =1 -m(w) .
Conversely, let aER, m((w/\(w.') = 0O, m((w\//“’) =1, Then
for any ™ €S we have ( see e.g. [5] )

m(y J=mlm A (V') = n{(mAM )V ("2/\/%' )) and

mim A (MAM)) = (A JA(mAM! ) & m(MAMY) =0
The valuation property (4°) then implies

m(m ) = ml{pAm IV (M AM)) + mUmAPOA (mAD)) =

= m(mAn) + mim A ), lcee MEK,

i1) Let (\A.,.Y € K o According to 1) it is.evident that(\,._l’ylei(m..
Further,

n((MAY IN (M Ay )7) = mf (/VL/\Y/\(M-')V ((VL/\Y/\Y‘)) <

£ m((\t/\(v-") +mvyAv’') =0
andi

m((MAY IV (mAY )7 = m{mVIYYIA Crvmivy!)) =

= meV/A’W') + miyVpvy) - m(puVy YWYyt oy =1
so that (W/\Y €K, o
Thus, the system K is a fuzzy algebra. Let (1/2), € Koo
Then i) implies m((1/2), } =1 and m((1/2)q) =0 what is
a contradiction. We get that Km is a soft fuzzy algebra,
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iii) If T is a sharpening of a(vté K, » then
T_'\/'C"Z(VL\/(W' and "C'A’C"é/vu\(u.‘so that
m(CVT ) 2 m(uvw) =1 ard m(TAT') € m(uA') =0,

It follows"C"EKm o

3o FUZZY DISJOINTNESS

Let ﬁ:éKg , ké N be given and let Bybe the correspon-
ding fuzzy partition. As it is stated in part 2., , the Bayes
principle, actually (5) and (6), is true. However, Jb4 can
include some fuzzy subsets Yoy of measure zero, i.e. m(’\r.}( } =0,
Excluding such elements we obtain a system édi ="SV¥€:.B\&,
miyy )> O} + For this new system (5) and (6),} i.e. the Bayes
principle, remains valid. System E,Jthas the properties:

€LY ¥ mve Eyr mAY AV ) =0 ¢

(C2) ml( :-gpr ) = 1/'

A

(€3) ¥vel, tmv)> o0 .
(C2) and (C3) are identical to (R2) and (R3) of the Piasecki’s
definition of a W-fuzzy Bayes partition ( see e.g. [3] )e Note
that (R2) and (R3) are preserved in the definition of a F-fuzzy
Bayes partition ( see [61) also. (Rl), respectively (R1”)
property of mutual W-disjointness ( F-disjointness ) of a Ba-
yes fugzy partition corresponds to our (Cl). Thus, one natural
definition of disjolntness of two fuzzy subsets can be as
follows:

Definition, Let (1,3, m) be a tuzzy probability space in

gense ol Kiement et al.,[‘t Y YCR . Then(»\,'\r are m=disjoint

iff m((“-/'\Y) = C o

Remarlk, Note that the m~disjointness on Km is more general

than the Wedisjointnegs and the F-disjointness, respectively.
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That means if/v. Y € K are W-(F-)dis joint, then they are
m-dis joint, The reverse assertion may fail, see Example 1,

part iii),

It is easy to see that m on Km fulfils two following pro=-
perties:
(D1) for any M €K, we have

m((w\/(w‘) =1 :

(D2) for any sequence -f[w_k}eicﬁ , Sup f(wkiel(m , satis-
fying the condition (Cl) we have
m(sup{p«.k}) =¥ m((\(k) .
(D1) is identical to (P1l) of the Piasecki’s definition of
a fuzzy P-measure ( see e.g« [3, 5] )o (D2) corresponds to
(P2) property of a fuzzy P-measure replacing the W-disjoint-
ness by the m-dis jointness., The above remark implies that
m is a fuzzy P-measure on Km °
Our results are summarized in the following general ver-

sion of Piasecki’s theorem on the Bayes formula for fuzzy

probability measures.

Proposition 2, Let (£2,G, m) be a fuzzy probability spuce
in sense of Klement et al., Km be a system consisting of all
fuzzy pertitions of (1,& ) satisfying the Bayes formula on
(0,5, m). Then m is a fuzzy P-measure on the soft fuzzy

algebra Km °

Example’, Let flbe the unit interval [0 , 1], &= (D) be
a generated fuzzy G-algebra of all Borel-measurable fuzzy
subsets of {X , and A be the Lebesque measure. Then

m(() = A ((w>c) , where ceJo, 1[

{s a fuzzy probability space in sense of Klement et al, Then
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i) if ¢ < 1/2 , then

Km=§(»u:‘@, >\(C<[W<1-C) 0%,

K, is s soft fuzzy G-algebra
ii) if ¢ 2 172 , then ‘
K, = $ MES Al - cé(\Lé ¢) = 0§,
Km is a soft fuzzy algebra but it is not a fuzzy
§-algebra
/l for rational points
iii) let M =1, , V=
0 for irational points
then(w andy are neither W-disjoint nor F-disjoint
but for every c&]O , 1[ Y belong to K and

m(/w/\‘Y) =0 so that w,Y are m~-disjoint,

Example 2. Let ([}, 4 ,P) be a crisp prcbability space,

6=fF (&) be a generated fuzzy &-algebra, f, g€ &,
Voxrel, £ix) < g(x) . We define a Merkoff kernel K ( for
more details see e.g. [1] ) letting K(x,.) be an uniform
distribution on the interval Ef(;c), glx)] for xefl,
The relationship
m(m) =_ch K(x,Lo,(mx)[ )dP(x) M EE
defines a fuzzy probability measure in sense of Klement et
al. ( see [l] Ye Then
ko= 4 MES P(1/2 = h(x)< M4 /2 + hix)) =0 ,
where h(x) = max§11/2 - £(x}, 11/2 - gla)l} .
If £ =04 and g =1y , thenm is the Zadeh s fuzzy proba-
bility measure [7] and K = d , i.e. only the crisp parti-

tions fulfils the Bayes principle.
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