THE HAHN-JORDAN DECOMPOSITION ON FUZZY QUANTUM SPACES

Anna TIRPAKOVÁ

Archaeological Institute of the Slovak Academy of Sciences
CS - 949 O1 Nitra - hrad, Czechoslovakia

In the present note, we give a generalization of the Hahn-Jordan decomposition of signed measures on so-called fuzzy quantum spaces, as well as the Lebesgue decomposition theorem, is present.

The following definition has been introduced in [3,6]:

DEFINITION 1. A fuzzy quantum space is a couple (X,M),
where X is a nonempty set and $M \subset [0,1]^X$ such that the following conditions are satisfied:

- (i) if $I_{1}I_{X}(x) = 1$ for any $x \in X$, then $I_{1}I_{X} \in M$;
- (ii) if $a \in M$, then $a^{\perp} : = 1 a \in M$;
- (iii) if $[1/2]_X(x) = 1/2$ for any $x \in X$, then $[1/2]_X \notin M$;
 - (iv) $\bigcup_{n=1}^{\infty} a_n : = \sup_{n} a_n \in M$, for any $\{a_n\}_{n=1}^{\infty} \subset M$.

The system M is called in the fuzzy sets theory a soft fuzzy Sealgebra (Piasecki, K. [4]).

Using Piasecki [4], we define a P-measure for a fuzzy quantum space as follows:

DEFINITION 2. A P-measure is any mapping m: $M \rightarrow [0,1]$, such that

(i)
$$m(a \cup a^{-}) = 1$$
 for any $a \in M$; (1.1)

(ii)
$$m(\bigcup_{n=1}^{\infty} a_n) = \sum_{n=1}^{\infty} m(a_n)$$
 whenever $\{a_n\}_{n=1}^{\infty} \subset M$, (1.2) $a_i \le 1 - a_j$ for $i \ne j$.

Due to Piasecki [4], we say that a fuzzy subset $a \in M$ is a W-empty set (W-universum) if $a \le a^{\perp}$ ($a^{\perp} \le a$) and we denote by W(M) the set of all fuzzy W-empty sets from M. Two sets a and b of M are said orthogonal and we write all (W-separated, in terminology of [4]) if $a \le b^{\perp}$.

The properties (1.1) and (1.2) motivate us to define a signed measure for a fuzzy quantum space (X,M) as follows:

DEFINITION 3. Let M be a soft fuzzy 6-algebra of subsets of a set X. A mapping m: M-R such that

(i) $m(a \cup a^{\perp}) = m(I^{\perp}I_{X})$ for any $a \in M$;

(ii)
$$m(\bigcup_{n=1}^{\infty} a_n) = \sum_{n=1}^{\infty} m(a_n)$$
 if $\{a_n\} \subset M$, $a_i \le a_j^{\perp}$, $i \ne j$, is said to be a signed measure of (X,M) .

If $m(a) \ge 0$ for any $a \in M$, m is said to be a measure, in particular, if for a measure m we have $m([1]_X) = 1$, m is a P-measure.

By Dvurečenskij [1], for a signed measure on M the following properties hold:

THEOREM 1. Let m be a signed measure on M. Then

- (i) $m(a^{1}) = m(1) m(a)$ for any $a \in M$;
- (ii) m(x) = 0 for any $x \in W(M)$;
- (iii) $m(b) = m(a) + m(b \cap a^{\perp})$ if $a \le b$, $a, b \in M$;
 - (iv) $m(a) = m(a \cap x)$ for any $a \in M$ and any $x \in W(M)$;
 - (v) $m(a \cup y) = m(a)$ for any $a \in M$ and any $y \in W(M)$;
 - (vi) $m(a \cup b) + m(a \cap b) = m(a) + m(b)$ for all $a, b \in M$;

(vii) if $a_n \neq a$ $(a_n + a)$, then $m(a_n) \rightarrow m(a_n)$, $\{a_n\} \in M$, $a \in M$.

THE HAHN-JORDAN DECOMPOSITION

THEOREM 2. Let m be a signed measure on M, then every system of mutually orthogonal sets $a \in M$, m(a) > 0 (m(a) < 0) is countable.

PROOF. Let $\xi \in M$ be a system of mutually orthogonal sets $a \in M$ with m(a) > 0.

For $n = 1, 2, \ldots, let \mathcal{E}_n = \{a: m(a) > 1/n\}$, then

$$\mathcal{E} = \bigcup_{n=1}^{\infty} \mathcal{E}_{n}$$
 (1.3)

It is clear that the system \mathcal{E}_n is finite for every n and from the property (1.3) we imply that the system \mathcal{E} is countable.

Q.E.D.

THEOREM 3. Let $a \in M$ and let $|m(a)| < \infty$, then every system \mathcal{F} of mutually orthogonal sets b with $b \le a$ and m(b) > 0 (m(b) < 0) is countable.

PROOF. It is analogous as that of Theorem 2.

DEFINITION 4. The fuzzy set a \leq M is positive (negative) with respect to a signed measure m if, for every set b \in M,

 $m(a \cap b) \ge 0 (m(a \cap b) \le 0)$.

DEFINITION 5. A couple (a,b), where a is positive and b is negative set with respect to m such that $b = a^{\perp}$, is called the <u>Hahn decomposition</u> of (X,M) with respect to

a signed measure m.

THEOREM 4. (<u>Hahn decomposition</u>) Let m be a signed measure on M, then the Hahn decomposition of (X,M) with respect to m exists.

PROOF. Without loss of generality we may assume that there is a maximal system of mutually orthogonal sets $a \in M$, which are negative (m(a) < 0) with respect to m (In opposite case m is a measure and we put $a = [1]_X$, $b = [0]_{X^{\bullet}}$). By Theorem 1, the system \mathcal{E} is countable.

Let $b = U\{a: a \in \mathcal{E}\} \in M$ and let $a = b^{\perp} \in M$, then $m(b) = m(Ua) = \sum m(a) < 0$.

For every $c \in M$, one holds $m(c \cap b) = m(c \cap \bigcup_{i} a_{i}) = m(\bigcup_{i} (c \cap a_{i})) = \sum_{i} m(c \cap a_{i}) \le 0, \text{ that is, b is negative.}$

Now we show that a is positive. Let a be not positive, then there exists a $c_0 \in M$, such that $c_0 \le a$, $m(c_0) \le 0$. We denote by \mathcal{E}_0 a maximal system of mutually orthogonal sets $d \in M$, $d \le c_0$, m(d) > 0. In view of Theorem 3, \mathcal{E}_0 is countable.

Let $d_o = \bigcup \{d: d \in \mathcal{E}_o\}$, then $m(d_o) > 0$, $d_o \le c_o$. We show, that $c_o \cap d_o^{\perp}$ is negative, because it does not contain any set of a positive measure. From the equality (iii) of Theorem 1, $m(c_o) = m(c_o \cap d_o^{\perp}) + m(d_o)$ which entails $m(c_o \cap d_o^{\perp}) < 0$. Then the set $c_o \cap d_o^{\perp}$ is negative and $(c_o \cap d_o^{\perp}) \perp b$, which is a contradiction with the maximality of system \mathcal{E} .

THEOREM 5. Let (a_1,b_1) and (a_2,b_2) be two Hahn decompositions of (X,M) with respect to m, then

 $m(x \cap a_1) = m(x \cap a_2),$

 $m(x \cap b_1) = m(x \cap b_2)$

for any $x \in M$.

PROOF. Since $x \cap (a_1 \cap a_2^{\perp}) \le x \cap a_1 \le a_1$, then

$$m(x \cap (a_1 \cap a_2^{\perp})) \geq 0, \qquad (1.4)$$

analogicaly, $x \cap (a_1 \cap a_2^1) \leq x \cap b_2$, then

$$m(x \cap (a_1 \cap a_2^{\perp})) \leq 0. \tag{1.5}$$

Due to (1.4) and (1.5), it holds

$$m(x \cap (a_1 \cap a_2^{\perp})) = 0. \tag{1.6}$$

Analogicaly we prove

$$m(x \cap (a_2 \cap a_1^{\perp})) = 0.$$
 (1.7)

From (1.6) and (1.7) we imply $m(x \cap a_1) = m(x \cap a_1 \cap a_2) = m(x \cap a_2)$.

Analogicaly we prove $m(x \cap b_1) = m(x \cap b_2)$.

Q.E.D.

THEOREM 6. (<u>Jordan decomposition</u>) Let m be a signed measure on M and let (a,b) be any Hahn decomposition with respect to m. Then a mapping m⁺ and m^m defined via

$$m^{+}(x) = m(x \cap a) \tag{1.8}$$

$$\mathbf{m}^{-}(\mathbf{x}) = \mathbf{m}(\mathbf{x} \cap \mathbf{b}) \tag{1.9}$$

for any $x \in M$ are the measures on M and m^+ , m^- are independent of given Hahn decomposition. Moreover, for any $x \in M$, it holds

$$m(x) = m^{+}(x) - m^{-}(x)$$
 (1.10)

PROOF. It follows immediately from Theorem 5 and from the definition of the Hahn decomposition.

Q.E.D.

DEFINITION 6. The formula (1.10) is called a <u>Jordan</u> decomposition of a signed measure m. The measures m⁺ and m⁻ are said to be positive and negative parts of m. The measure [m] defined as

$$|m| = m^{+} + m^{-}$$
 (1.11)

is called a total variation of a signed measure m.

For some properties of the Jordan decomposition we recall the following notions.

An F-observable on a fuzzy quantum space (X,M) is a mapping $x: B(R^1) \longrightarrow M$ satisfying the following properties:

(i)
$$x(E^c) = 1 - x(E)$$
 for every $E \in B(R^1)$;

(ii) if
$$\{E_n\}_{n=1}^{\infty} \subset B(R^1)$$
, then $x(\bigcup_{n=1}^{\infty} E_n) = \bigcup_{n=1}^{\infty} x(E_n)$,

where $B(R^1)$ is the Borel 5-algebra of the real line R^1 , and E^C denotes the complement of E in R^1 .

If $f: \mathbb{R}^1 \longrightarrow \mathbb{R}^1$ is a Borel measurable function and x is an F-observable, then $f \cdot x : E \longrightarrow x(f^{-1}(E))$, $E \in B(\mathbb{R}^1)$, is an F-observable, too.

The product of two observables x and y is defined as follows

$$x \cdot y = ((x + y)^2 - x^2 - y^2)/2.$$
 (1.12)

If m is a P-measure and x is an observable of (X,M), then m: $E \longrightarrow m(x(E))$, $E \in B(R^1)$. Let a be given set of M, the indicator of a is a unique observable x_R defined via

$$\mathbf{x}_{\mathbf{a}}(\mathbf{E}) = \begin{cases} \mathbf{a} \cap \mathbf{a}^{\perp} & 0,1 \notin \mathbf{E} \\ \mathbf{a}^{\perp} & 0 \in \mathbf{E}, 1 \notin \mathbf{E} \\ \mathbf{a} & 0 \notin \mathbf{E}, 1 \in \mathbf{E} \\ \mathbf{a} \cup \mathbf{a}^{\perp} & 0,1 \in \mathbf{E}, \end{cases}$$
(1.13)

for $E \in B(R^1)$.

A mean value of an observable x in a P-measure m we understand the expression m(x): = $\int x \, dm$ defined by

$$\int x \, dm = \int_{R^1} t \, dm_x(t)$$

(if the integral on the right hand exists and is finite).

Let m be a P-measure of (X,M). We define an indefinite integral of an observable x over a fuzzy set $a \in M$ via

$$m(a) = \int_{a} x dm = \int_{a} x_{a} dm$$

where x is the indicator of a fuzzy set.

This indefinite integral has been defined in [2], and in a-nother way in [5].

THEOREM 7. Let m be a P-measure and let x be an observable of (X,M) such that $m(|x|) := \int_{\mathbb{R}^1} |t| dm_x(t) < \infty$. Then

the mapping V defined via

$$V(a) = \int_{\mathbb{R}} x \, dm, \quad a \in \mathbb{N}, \qquad (1.14)$$

is a signed measure on (X,M), where negative and positive parts, V^+ and V^- , are defined as follows

$$V^{+}(a) = \int x^{+} dm, a \in M,$$

 $A = \int x^{-} dm, a \in M,$
(1.15)

where $x^{+} = f^{+} \circ x$, $x^{-} = f^{-} \circ x$ and $f^{+}(t) = \max(t, 0)$, $f^{-}(t) = \min(0, t)$, $t \in \mathbb{R}^{1}$.

PROOF. In this proof, we present two qualitatively different approaches to it.

PROOF 1. Let $x^+ = f_0^+ x$, $x^- = f_0^- x$, then (a,b) is a Hahn decomposition of M defined via $a = x(f_0, \infty)$, $b = x((-\infty, 0))$. Let $x^+(R^1) = x((f^+)^{-1}(R^1)) = x(R^1)$.

We can show that $m(e \cap a) \ge 0$, $m(e \cap b) \le 0$ for any $e \in M$. Denote by $1_k = (a \cup a^{\perp}) \cap (e \cup e^{\perp}) \cap x(R^1)$ and we define new observables of (X.M):

$$\overline{x}(E) = x(E) \cap 1_k \cup 0_k$$

$$\bar{x}_{a}(E) = x_{\bar{a}}(E)$$

$$\overline{x}_{e}(E) = x_{\overline{e}}(E)$$

$$\overline{x_{ane}}(E) = x_{\overline{ane}}(E) \cap 1_k \cup 0_k$$
, $E \in B(R^1)$, where

$$\overline{a} = a \cap 1_k \cup 0_k$$

Then $x_{a \cap e} = x_{\overline{a \cap e}} = x_{\overline{e}} \cdot x_{\overline{a}}$ and due to Dvurečenskij [1], there exists a mapping $\ell: X_{1\overline{k}} \to \mathbb{R}^1$ such that $x_{1\overline{k}}(\overline{x}(E)) = (-1)(E)$ for every $E \in B(\mathbb{R}^1)$, where $X_{1\overline{k}}(b) = \{s \in X_{1\overline{k}}: b(s) = 1_{\overline{k}}(s)\}$, where b is a fuzzy set beloging to M such that $(b \cup b^{\perp})(s) = 1_{\overline{k}}(s)$ for any $s \in X$. The system $A_{1\overline{k}}$ of all fuzzy sets $X_{1\overline{k}}(b)$ forms a 5-algebra of crisp subsets of a set $X_{1\overline{k}}([1])$ and a mapping $A_{1\overline{k}}: A_{1\overline{k}} \to [0,1]$ defined via

$$\mu_{1k}(X_{1k}(b)) = m(b), b \in \mathcal{A}_{1k}$$

is a probability measure.

It may be proved that

$$X_{1k}(\overline{x}_a(E)) = I_A^{-1}(E)$$

$$X_{1k}(\overline{x}_{\epsilon}(E)) = I_F^{-1}(E)$$

for any $E \in B(\mathbb{R}^1)$, where $A = \{ s \in X_{1k} : \ell(s) \ge 0 \}$ and F is a (unique) crisp subset of A_{1k} .

Calculate
$$f'(a) = f'(a \land a) = \int x \, dx = \int f'(a) \, d\mu_{a}(a)$$

$$V^{+}(a) = V(e \wedge a) = \int x \, dm = \int V(s) \, d\mu_{1k}(s) \geqslant 0.$$
ena AAF

Analogically we have
$$V^{-}(a) = -V(e \cap b) = -\int x dm = -\int V(s) d\mu_{1k}(s) \ge 0.$$

In same way we have

$$V^{-}(e) = -\int_{e} x^{-} dm,$$

which finishes the first proof.

PROOF 2. Let us define the equivalence "~" via a~ b iff $m(a \cap b^{\perp}) = 0 = m(a^{\perp} \cap b)$. Then $\widetilde{M} = M/\sim = {\widetilde{a} = {b \in M: b \sim a}}$ \sim a}: a \in M} is a Boolean 6-algebra and \sim on M defined as $\mathcal{M}(\widetilde{a}) = m(a), a \in M$

is a probability measure on M.

The map \tilde{x} : $E \rightarrow \tilde{x}(E)$, $E \in B(R^1)$, is a 6-homomorphism from $B(R^1)$ into M. Due to Sikorski [7], there is a measurable space (Ω, \mathcal{Y}) and a 5-homomorphism h from \mathcal{Y} onto M. In view of Varadarajan [8], there is an Y-measurable, real-valued function Ψ such that $\widetilde{\mathbf{x}}(\mathbf{E}) = \mathbf{h}(\Psi^{-1}(\mathbf{E}))$, $\mathbf{E} \in \mathbf{B}(\mathbf{R}^1)$. It is simple to verify, that $P_m: \mathcal{Y} \longrightarrow [0,1]$ which is given by $P_m(A) =$ = $\mathcal{M}(h(A))$, $A \in \mathcal{G}$, is a probability measure on \mathcal{G} . Hence, for any $e \in M$, there is $G \in \mathcal{G}$ such that e = h(G). Moreover, if we put $A^+ = \{\omega \in \Omega : \Psi(\omega) \ge 0\}$ and $A^- = \{\omega \in \Omega : \Psi(\omega) < 0\}$, then

$$\widetilde{a} = h(A^+), \widetilde{b}^{\perp} = h(A^-).$$

Calculate
$$V^{+}(e) = V(e \cap a) = \int_{e \cap a} x \, dm = \int_{e \cap a} x \, d\mu = \int_{e \cap a} \Psi(\omega) \, dP_{m}(\omega) \ge 0.$$

$$V(e) = -V(e \cap b) = -\int x dm = \int V(w) dP_m(w) \ge 0.$$

Q.E.D.

To define a Lebesgue decomposition theorem we introduce the following notions.

DEFINITION 7. We say that a signed measure m is <u>dominated</u> by a measure n, if n(a) = 0 implies m(a) = 0, and we write $m \ll n$.

DEFINITION 8. If m, n are two measures nn M, we say m is singular with respect to n (we write mln) if there exist two fuzzy sets a, b \in M, a = b, such that for every $x \in M$, $m(x \cap a) = n(x \cap b) = 0$.

THEOREM 8. (Lebesgue decomposition) Let m and n be measures on a fuzzy quantum space (X,M). Then there exist unique two measures m_1 , m_2 on M with $m_1 \ll n$, and $m_2 \perp n$, such that

$$m(a) = m_1(a) + m_2(a)$$
for every $a \in M_0$

PROOF. If $m \ll n$, we denote $m_1 = n$ and $m_2 = 0$ and not Theorem 8 holds. Hence, we may assume that m is dominated by n. We denote by \mathcal{E} a system of all sets $a \in M$, m(a) = 0, n(a) > 0.

Let \mathcal{E}_o be a maximal system of mutually orthogonal sets from \mathcal{E} , thet \mathcal{E}_o is countable (Theorem ?). Let $\mathbf{a}_o = U\{\mathbf{a}: \mathbf{a} \in \mathcal{E}_o\} \subset M$, then $\mathbf{m}_1(\mathbf{a}) = \mathbf{m}(\mathbf{a} \cap \mathbf{a}_o^{\perp})$ for every $\mathbf{a} \in M$. If $\mathbf{a} \in M$, $\mathbf{n}(\mathbf{a}) = 0$, then $\mathbf{n}(\mathbf{a} \cap \mathbf{a}_o^{\perp}) = 0$ implies

$$m(a \cap a_0^{\perp}) = m_1(a) = 0.$$
 (1.16)

From (1.16) we have

 $m_1 \ll n_0$

Let, for every $a \in M$, we have $m_2(a) = m(a \cap a_0)$. Now we show that $m_2 \perp n$. Let $x = a_0$, $y = a_0^{\perp}$, then

$$0 \le n(a \cap x) = n(a \cap a_0) \le n(a_0) = 0,$$
 (1.17)

and

$$m_2(a \cap y) = m(a \cap y \cap a_0) = m(a \cap a_0 \cap a_0) = 0,$$
 (1.18)
for every $a \in M$.

From (1.17) and (1.18) we conclude that $m_2 \perp n_0$

Now we prove the uniqueness of m_1 and m_2 . Let $n = m_1 + m_2 = m_1' + m_2'$, $m_1, m_1' \ll n$ and $m_2, m_2' \perp n$. Let a_1 , b_1 and a_2 , b_2 are such elements of M that $b_1 = a_1^{\perp}$, $b_2 = a_2^{\perp}$ and

$$n(x \cap a_1) = m_2(x \cap b_1) = 0$$

 $n(x \cap a_2) = m_2(x \cap b_2) = 0$ for any $x \in M_0$

Calculate

 $0 = n(x \cap a_1) = m_1(x \cap a_1) + m_2(x \cap a_1)$ which gives $m_1(x \cap a_1) = 0 = m_2(x \cap a_1)$.

Analogically $0 = n(x \cap a_2) = m_2(x \cap a_2) = 0$

and

 $n(x \cap a_1^{\perp}) = m_1(x \cap a_1^{\perp}) + m_2(x \cap a_1^{\perp}) = m_1(x \cap a_1^{\perp}),$ $m_1(x) = m_1(x \cap (a_1^{\perp} \cup a_1)) = m_1(x \cap a_1^{\perp}) + m_1(x \cap a_1) = m_1(x \cap a_1^{\perp}).$ Similarly we show that

 $n(x \cap a_2^{\perp}) = m_1^{\prime}(x \cap a_2^{\perp}) = m_1^{\prime}(x),$ so that, $m_1^{\prime}(x) = m_1^{\prime}(x)$ for any $x \in M$ and, therefore, $m_2^{\prime}(x) = m_2^{\prime}(x)$ for each $x \in M$.

Q.E.D.

REFERENCES

- [1] DVUREČENSKIJ, A.: The Radon-Nikodym theorem for fuzzy probability spaces. Sent for publication.
- [2] DVUREČENSKIJ, A., TIRPÁKOVÁ, A.: Sum of observables in fuzzy quantum spaces and convergence theorems.

 Sent for publication.
- [3] DVUREČENSKIJ, A., RIEČAN, B.: On joint observables for F-quantum spaces. Busefal, No 35, 1988, 10 14.
- [4] PIASECKI, K.: Probability of fuzzy events defined as denumerable additivity measure. Fuzzy Sets and Systems 17, 1985, 271 284.
- [5] RIEČAN, B.: Indefinite integral in F-quantum spaces.

 Sent for publication.
- [6] RIEČAN, B.: A new approach to some notions of statistical quantum mechanics. Busefal, No 35, 1988, 4 - 6.
- [7] SIKORSKI, R.: Boolean Algebras. 3rd ed., The Springer-Verlag, New York Inc. 1969.
- [8] VARADARAJAN, V. S.: Geometry of Quantum Theory, Van Nostrand, 1968.