66

THE HAHN~JORDAN DECOMPOSITION ON FUZZY QUANTUM SPACES

Anna TIRPAROVL

Archaeological Institute of the Slovak Academy of Sciences
CS = 949 01 Nitra -~ hrad, Czechoslovakia

In the present note, we give a generalization of the
HahneJordan decomposition of signed measures on so=called

fuzzy quantum spaces, as well as the Lebesgue decomposi-

tion theorem, is present.

The following definition has been introduced in [3,6]:
DEPINITION 1, A fuszy guentum space is a couple (X,M),
where X is a nonempty set and uc[o,ﬂx such that the fol-
lowing conditions are satisfied:
(1) 12 [1I4(x) = 1 for any x€ X, then [1I € ¥;
(11) if a€ M, then a*: = 1 = a€ M3
(111) 1¢ [1/2]3(x) = 1/2 for any x€ X, then [1/2I € u3

ot 00
(iv) },jﬂan: = gup e € M, for any {an} naqS Mo

The system M is called in the fuzzy sets theory a soft fuze
zy Gmelgebra (Piasecki, K. [4] ).

Using Piasecki [4] , we define a P-measure for a fuzzy
quantum space as follows:

DEFINITION 2, A P-measure is any mepping m: M—>[0,1],
such that
(1) m(aua.*) = 1 for any ae M; (1e1)
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00 ® o ..
(i1) m(nti"an) = §1m(an) whenever {an}nﬂc M, (142)

9.1$1-a.:I for 1 £ Jje.

Due to Piasecki [4 ], we say that a fuzzy subset a€ M
is a Weempty set (Weuniversum) if a< et ("< a) and we de-
note by W(M) the set of all fuzzy We-empty sets from M. Two
sets a and b of M are said orthogonal and we write al b (W-
separated. in terminology of [41)if a$be

The properties (1.1) and (1,2) motivate us to define

a signed measure for a fuzzy quantum space (X,M) as follows:

DEFINITION 3, Let M be a soft fuzzy G-algebra of sube
sets of a set X. A mapping ms M—R such that
(1) m(aval) = m( [1lx) for any a € M;

© ®
(11) m(klﬂan) - fé’,“‘%’ 12 {a}c M, 8,4 a; L 143,
is said to be a_signed measure of (X,M).

If m(a)> O for any ac M, m is saeid to be & measure,
in particular, if for a measure m we have m([ﬂx) =1, m
is a P=measure.
By Dvuredenskij [1], for e signed measure on M the
following properties hold:
THEOREM 1, Let m be & signed measure on M. Then
(1) m(a’) = m(1) - m(a) for any a€ M;
(ii) m(x) = O for any xe€ W(M)3
(1i1) m(b) = m(a) + m(bna) if a&b, a,beM;
(iv) m(a) = m(anx) for any a€ M and any x'e w(M);
(v) m(auy) = m(a) for any a € M and any y€ W(M)3
(vi) m(aUb) + m(anb) = m(a) + m(b) for all a,b€ My
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(vii) 12 an/‘a (a,wa), then m(an)—> m(an), [ax} ¢ M, a€l,

THE HAHN=-JORDAN DECOMPOSITION

THEOREM 2, Let m be a signed measure on M, then every
system of mutually orthogonal sets a< M, m(a)> 0 (m(a)< 0)

is countable,

PROOF, Let £C M be & system of mutually orthogonal
sets a€ M with m(a)> O,

For n = 1, 2y eeey lot & = {a: m(a)>1/n}, then

¢ = U £ e (163)

It is clur that the system £ 4is finite for every n and
from the property (1.3) we imply that the system & dis

countable,

QeE.De

THEOREM 3, Let a € M and let lm(a.)|<oo, then every
system J of mutually orthogonel sets b with b<e end
B(d)>0 (m(b)< 0) is countable.

PROOF, It is analogous as that of Theorem 2,

DEFINITION 4o The fuzzy set a€ M is positive (nege=
iive) with respect to a signed meesure m if, for every
set be M,

m(and)2 0 (m(andb)<0),

DEFINITION 5. A couple (a,b), where a is positive

and b is negative set with respect to m such that b = a.",

is called the Hahn decomposition of (X,M) with respect to



a signed measure m.

THEOREM 4, (Hahn decomposition) Let m be a signed mea=-
sure on M, then the Hahn decomposition of (X,M) with res=
pect to m existse |

PROOF, Without loss of generality we may assume that there
is a maximal system of mutually orthogonal sets a€ M, which
are negative (m(a)< 0) with respect to m (In opposite case
m is a measure and we put a = [1ly, b = _[le.). By Theorem 1,
the system £ is countable,

Let bw U{a: a¢E}€ M and let a = b € M, then

m(b) = m(U a) = J.m(a)< 0,

For every c€& M, one holds

m(cnbd) = m(cn\i’ ai) = m(‘i (enayd) .Zi: m(cnai)SO, that

is,b is negative.

Now we show that a is positive. Let & be not positive,
then there exists a ¢ € M, such that Co< 8y m(c°)< Oe We de=
note by 80 a maximal system of mutually orthogonal sets
deM, d4c , m(d)> 0, In view of Theorem 3, f‘o is countables

Let 4 = U {a: def}, then m(d )>0, dos c o We show,
that con d;' is negative, because it does not contain any
set of a positive measure, From the equality (iii) of Theo~
rem 1, m(c,) = m(c N d:) + m(d,) which entails m(e N dé‘)( Oe
Then the set c N do"' is negative and (con d: yLv, which is
a contrediction with the maximality of system &,

Q.E.De
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THEOREM 5. Let (a,,b,) and (az,ba) be two Hahn decom=
positions of (X,M) with respect to m, then

mxNa,) = m(xNa,),

m(xNb,) = m(xNb,)
for any x€ M,

PROOF, Since xN(a na2 )<xr\a1$ &,y then

xn(:cr\(ev.1f*w.2 )2 o0, | (1.4)
analogicaly, xN (a1n32 Mznbz, then

m(xn(a1na2"'))$0. (15)
Due to (1.4) and (1.5), it holds

m(xn(a;na;")) = 0, (146)

Analogicaly we prove
m(xN (a,N 0.1"' )) = 0. (1.7)
Prom (1.6) and (1.7) we imply m(xna.1) = m(xna1n a.z)'-
= m(xNa,d.
Analogicaly we prove m(xnb,) = m(xNb,y)e
| QeE.D,

on) Let m be a signed
measure on M and let (a,b) be any Hahn decomposition with
respect to m. Then a mapping m* and m™ defined via
m*(x) = m(xna) (148)
m (x) = m(xNb) | (1.9)

for any x€ M are the measures on M and m"', m~ are inde -

pendent of given Hahn decomposition., Moreover, for any
x€M, it holds
m(x) = m¥(x) = m~(x). (1410)
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PROOF, It follows immediately from Theorem 5 and from
the definition of the Hahn decomposition.

QeEeDe

DEFINITION 6o The formula (1.10) is called a Jordan

on of a signed measure m. The measures m* and

m~ are said to be positive and negative parts of me The
measure [ m| defined as
iml = ¥ + " (1e11)

is called a total variation of a signed measure m.

For some properties of the Jordan decomposition we ree
call the following notions.

An Peobservable on a fuzzy quantum space (X,M) is a
mapping x: B(R')—M satisfying the following properties:
(1) x(E®) = 1 = x(E) for every E€ B(R1)§

00 1 e @©
(14) ir {Enl i S B(R'), then ‘(U;En) - U',"‘En"
nN= D=

where B(R') is the Borel G-algebre of the veel 1line R', and
EC domtea"tﬂh_e complement of E in R,

I? £: R'—»R' 13 a Borel measurable function and x is
an P-observable, then fox: E—»x(£~'(E)), E€ B(R'), is an
F-gbservable, tooe.

The product of two observables x and y is defined as
follows ,

x.y = ((x + P2 = 2% = FP)/2. (1.12)

I m is a P-measure and x is an observable of (X,M),
then m: E—m(x(E)), E€ B(R'). Let a be given set of M, the
indicator of a is a Unique observable X, defined via



fanat 0,1€ E
at O€EE, 1€E -
x,(E) = 4 (1.13)
a O¢E, 1€E
| ava* 0,1€E,

for E€ B(R1 Yo
A mean value 0f an observable x in a P-measure m we wune-

derstand the expression m(x): = f x dm defined by
xdn = j t (t)
frme ] o
(12 the integral on the right hand exists and is finite).

Let m be a P-measure of (X,M)e We define an indefinite
integral of an observable x over a fuzzy set a€ M via

m(a) = fx dms -fx.xa am,

where x, is the indicator of a fuzzy set. ]
This indefinite integral has been dcﬁned in P] s 8nd in a=
nother way in [5 ],

T Let m be a P=measure and let x be an obserw
vable of (X,M) such that m(Ix|): = /1..(1:| dm (t)<® ¢ Then
R

the mapping V defined via
P(a) = [x dm, e€M, (1.14)

is a signed measure on (X,M), where negative and positive
parts, V* and V¥, ere defined as follows
¥t (a) -,fx* dm, a€ M, o
a (1+15)
V(a) -fx" dm, a€ M,
where x* = % x, x° = 2o x and £*(t) = max(t,0), £7(t) =

a = min(0,t), tER',
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PROOF. In this proof, we present two qualitatively
different appro‘aches to it.

PROOF 1, Let x* = £% x, ™ = £% x, then (a,b) is &
Hahn decomposition of M defined via a = x([0,00)), b =
= x((=,0))s Let x*(R") = x((£5)71(R")) = x(r"),

We can show that m(ena)Z 0, m(enb)s O for any e€ M,
Denote by 1, = (ava*)n(eUe™Nn x(R') and we define new
observables of (X,M):

X(E) = x(E)n 1,V O,

x,(E) = xz(E)

X (E) = xz(E)

To(E) = xg2(E)N 1,V 0, E€B(R'), where

e =an1, U0,

e=ent U0,

Then X, = Xsrs = X5 o Tp end du: to Dvuredenskij [1],
there exists e mapping ¢: X,z— R such that x1k(§(E)) =

= ¢"1(E) for every EGB(R1), where X,, (b) = {sex1k: b(s)=
= 1k(s)}, where b is a fuzzy set beloging to M such that
(bUb )(8) = 1k(s) for any s €X, The system Jim of all
fuzzy sets x1k(b) forms a S-algebra of crisp subsets of

a set x1k(l:1.]) and a mapping /4.t J‘.&—’fo,ﬂ defined via

M1 (Eqp (D)) = m(b), vedyy
is a probability measure,

I+ may be proved that

Xy (Fo(E)) = Ip(E)

Xy (T, (E)) = IF (E)
for any E€ B(R'), where A = {s€ Xqyt E(8)2 0} and F is &
(unique) crisp subset of .i1k.
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Calculate

¥*(a) = P(ena) = /x dm = f?(S) a4 (83> O,
ena AnF :

Analogically we have

P=(a) = «af(enD) = = f xdm = = ./f(s) d/‘.lk(s)} O.
ena ANF

In same way we have
P=(e) = -fx' dm,
e

which finishes the first proof.

PROOF 2, Let us define the equivalence "~ " via ar~ b
if? m(anb"') S I m(a‘n be Theni e M ={8 = {beM:s D~
~ 8}: a€M} is & Boolean 6-algebra and M an M defined as

M(E) = m(a), ae M

is a probability measure on M.
The map xX: E—X(E), E € B(R! ),1s a 6=homomorphism from B(R1)
into M, Due to Sikorski [7], there is e measurable space
(£1,Y) and a 6~homomorphism h from ¥ onto M. In view of
Varaderejan [8], there is an S-measurable, real-valued
function ¥ such that E(E) = h(¥"'(E)), E€B(R'), It is sim-
ple to verify, that B : ¥—>[0,1] which is given by P (A)=
= (n(a)), A€Y , 1s a probability measure on J; Hence,

for any e€ M, there is G€ ¥ such that e = h(G)s Moreover,
it we put AY = {wen ;¥ (w)2 0} and A~ ={wef : ¥ (w)< 0},
then

2 = h(a*), D' = n(A7).

Calculate
vt(e) = Y(ena) = / X dm = / T gH = /W(w) ae ()2 0.
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V"(e) = =f(end) = = / x dm = / Y(w) d.‘Pm(w)) Oe
enb GnA™

QeE.D.

To define a Lebesgue decomposition theorem we introduce
the following notions.

DEFINITION 7., We say that a signed measure m is domjie

pated by a measure n, if n(a) = 0 implies m(a) = 0O, and we
write m & n,

DEFINITION 8, If m, n are two measures on M, we say
m is sipngulser with respect to n (we write mln) if there
exist two fuzzy sets a,bé M, a = b"',‘ such that for every

x€M, m(xna) = n(xNd) = 0,

THEOREM 8. (Lebesgus decomposition) Let m and n be
measures on a fuzzy quantum space (X,M). Then there exist

unique two meesures m,, m, on M with m1<< n, and m2.1. n,
such that

m(a) = my(a) + my(a)
for every ac€ M,

PROO?. If m&n, we denote m; = n and m, az?o:nd
Theorem 8 holds. Hence, we may assume that m is domina-
ted by n. We denote by & a system of all sets a €M,
m(a) = 0, n(a)> 0,

Let £ o be a maximel system of mutually orthogonal
sets from &, thet & o 18 countable (Theorem T)e Let a, =
= U{a: a¢f }c M, then my(a) = m(ana.oj') for every a€ M.
It a€M, n(a) = 0, then n(ana.o"') = 0 implies

m(ana:') = m,(a) = 0 (1416)



From (1.16) we have
Let, for every a€ M, we have ma(a) = m(anao). Now we

show that m2.L n. let xma,, y= ao‘L, then

0<n(anx) = n(anao)Sn(ao) = 0, (1617)
and
mz(any) = m(anynao) = m(ana:n ao) = 0, (1.18)

for every a€ M,
From (1.17) and (1.18) we conclude that m,l n.
Now we prove the uniqueness of m, and mye Let n =
=m +my, = m1' + nzf, m, o, ‘& n and ma,ma'.l. n. Let a,,
b, and 8y, by are such elements of M that by = a, by,
and
n(xnea,) = my(xNby) = 0O
n(znaz) = mz’(xnbz) = 0 for any x€ M.
Calculate
0 = n(xna,) = m(xna,) + my(xna,) which gives m1(xna1‘) =
= 0 = my(xneay)de |
Anslogically O = n(xna,) = mg'(xn 9'2) =0
and
n(xna, L) = m.,(:r.r\at.1 ) + my(xna, ") - m,(xna,1 Yy
m,(x) = u\.,(xn(s.1 Vay)) = m1(xna1 ) + my(zney) = m1(x/\a.1 ).
Similary we show that
n(xnaz") = m."(xnaz“) = m, (x),
so that,m,(x) = m, “(x) for eny x€ M and, therefore,m,(x) =
= m, (x) for each x¢ M.

QOEOD.
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