LATTICE-VALUED LOGIC AND THREE-VALUED LOGIC

Xu Yang

Department of Mathematics, Southwestern Jiaotong University

Emei, Sichuan, China

ABSTRACT

In this paper, we have proved that any two logic formulae are identical in any complemented distributive lattice which contains O,M, and I if and only if they are identical in the three-valued logic, thus it tell us that the simplification of lattice-valued logic formula can be realized by three-valued logic, and the simplification of lattice-valued logic formula becomes much simpler.

KEYWORDS: Lattice-Valued Logic, Three-Valued Logic, Complemented Distributive Lattice, L-Valid, L-Inconsistent.

I. LATTICE-VALUED LOGIC FORMULA

Let the variable set be $\{x_1, \ldots, x_n\}$.

DEFINITION 1.Let L be a lattice [1], \leq a partly ordered relation on L.L is called a complemented lattice if the mapping

 $': L \longrightarrow L$

satisfies for all a,b &L the following conditions:

- (1) (a')' = a;
- (2) If $a \le b$, then $b' \le a'$.

M is called an intermediate element, if M L satisfies the following conditions:

- (1) M' = M (i.e. M is an immovable point of the mapping ');
- (2) $\forall a \in L$, $a \leqslant M$ or $M \leqslant a$.

It is easily shown the intermediate element is unique, it is always written as M in this paper.

What follows in the passage,L expresses always a complemented distributive lattice which contains 0,M and I.The operation of the supremum and the infimum will be denoted,by "+" and "." respectively (in general, "." is omitted).

DEFINITION 2.The variable x or its complementary \overline{x} is called literal.Literal product is called phrase, denoted it by P,P' or P, Literal sum is called clause, denoted it by C,C' or C, .

DEFINITION 3.A lattice-valued logic formula denoted $F(x_1, \ldots, x_n)$ is a mapping

$$F : L^{\circ} \longrightarrow L$$

We define lattice-valued logic formula generated by x_1, \ldots, x_n recursively as follows:

- (a) O,I and x are lattice-valued logic formulae;
- (b) if F is a lattice-valued logic formula, then \vec{F} is a

lattice-valued logic formula;

- (c) if F and G are lattice-valued logic formulae, then F+G and F.G are lattice-valued logic formulae;
- (d) the only lattice-valued logic formulae are those given by (a)-(c).

Let F and G be two lattice-valued logic formulae. we define $\bar{F}(A) = (F(A))'$

(F.G)(A) = F(A).G(A)

(F+G)(A) = F(A)+G(A)

DEFINITION 4.Let F and F be two lattice-valued logic formulae We say that F contains F, denoted by F \leqslant F, if \forall A \leqslant Lⁿ,

 F_{\cdot} (A) \leq F_{2} (A)

In particular we say that F is L-valid (L-inconsistent) if $\forall A \in L^n$, F. (A) \geqslant M (\leqslant M)

II. LATTICE-VALUED LOGIC AND THREE-VALUED LOGIC

LEMMA 1.Let $x \in \{x_1, \dots, x_n, \bar{x}_1, \dots, \bar{x}_n\}$; then $x+\bar{x}$ is L-valid and $x.\bar{x}$ L-inconsistent.

LEMMA 2.(a) A clause C is L-valid if and only if it contains a pair of variables (x, \bar{x}) ;

(b) A phrase P is L-inconsistent if and only if it contains a pair of variables (x_i, \hat{x}_i) .

Setting

$$L^* = \{ O, M, I \}.$$

It is clear that (L^*,\leqslant) is a sublattice of L. We say that a lattice-valued logic formula is three-valued logic formula if we use L* instead of L in definition 3.

LEMMA 3.Let P be a phrase, C a clause; then P \leq C (in lattice-valued logic) if and only if P \leq C (in three-valued logic).

PROOF. The necessity is clear, we need establish only sufficiency. We divide it into two cases.

Case 1. There is the same literal in P and C

Let literal x be contained in P and C; then

$$P \leqslant x \leqslant C$$

Case 2. There is no the same literal in P and C

(1) If C contains a pair of variables $(x_i,\bar{x_i})$ and so does P, then $P\leqslant M\leqslant C$ by lemma 2.

(2) If C contains a pair of variables (x,\bar{x}) , and P does not contain any pair of variables (x,\bar{x}) . Setting

$$A = (a_1, \ldots, a_n) \in L^{\mu^n}$$

and it satisfies the following condition:

$$a_i = \left\{ \begin{array}{l} 0, \ \hat{x}_i \ \mbox{is contained in P;} \\ I, \ x_i \ \mbox{is contained in P;} \\ M, \ \mbox{otherwise,} \end{array} \right.$$

then P(A) = I,C(A) = M in contradiction with $P \le C$ (in three-valued logic formula). Therefore, (2) does not hold.

(3) If C does not contain any pair of variables (x, \bar{x}) , and P contains a pair of variables (x, \bar{x}) . Setting

$$B = (b_1, \ldots, b_n) \cdot L^{*n}$$

and it satisfies the following condition

 $b_{j} = \begin{cases} 0, & x_{j} \text{ is contained in C;} \\ I, & \bar{x}_{j} \text{ is contained in C;} \\ M, & \text{otherwise,} \end{cases}$

then P(B) = M, C(B) = 0 in contradiction with $P \leqslant C$ (in three-valued logic). Therefore, (3) does not hold.

(4) If C and P do not contain any pair of variables (x, \bar{x}) . Setting

 $D = (d_1, \ldots, d_n) \in L^{*n}$

and satisfies the condition

 $d_i = \left\{ \begin{array}{l} 0, \; x_i \; \text{is contained in C or } \bar{x}_i \; \text{in P;} \\ \text{I, } \bar{x}_i \; \text{is contained in C or } x_i \; \text{in P;} \\ \text{M, otherwise,} \end{array} \right.$

then C(D) = O, P(D) = I in contradiction with $P \leqslant C$ (in three-valued logic). Therefore, (4) does not hold.

To sum up, the case 1 and the case 2 (1) hold only. So the sufficiency is proved. Q.E.D.

By the proof of lemma 3, we have

COROLLARY 1.Let P be a phrase, and C a clause; then $P \leqslant C$ if and only if there is the same literal in P and C, or P and C contain complementary pair.

THEOREM.Let F and G be two lattice-valued logic formulae.Then $F\leqslant G$ (in lattice-valued logic) if and only if $F\leqslant G$ (in three-valued logic).

PROOF. The necessity is clear, we need prove only sufficiency. First all we note the fact that each lattice-valued logic formula can be written either in the disjunctive normal form or the conjunctive normal form. This is obvious, due to the properties of L. Therefore, we can write

$$F = P_1 + \ldots + P_m$$

 $C = C_1 \dots C_t$

Where, P is a phrase (i = 1, 2, ..., m), C, is a clause (j = 1, 2, ..., t). To prove

 $P_1 + ... + P_m \le C_1 ... C_t$ (in lattice-valued logic)

Вy

 $P_1 + ... + P_m \leq C_1 ... C_t$ (in three-valued logic)

We have

 $\forall i \in \{\ 1, \dots, m\ \}, \ \forall \ j \in \{\ 1, \dots, t\ \}, \ P_i \leqslant C_j \ (\ in \ three-valued logic\).$

By lemma 3, we have

 $\forall i \in \{1,...,m\}, \forall j \in \{1,...,t\}, P_i \leqslant C_j \text{ (in lattice-valued logic),so}$

 $\forall j \in \{ 1, ..., t \}, P_i + ... + P_m \leqslant C_j \text{ (in lattice-valued logic).}$ Therefore, $P_i + ... + P_m \leqslant C_i ... C_t \text{ (in lattice-valued logic).}$

O.E.D.

COROLLARY 2.Let F and G be two lattice-valued logic formulae, then, F = G (in lattice-valued logic) if and only if F = G (in three-valued logic).

By the order relation "<" of real number, and we define that $\forall a \in [0,1], (a)' = 1-a$, then ([0,1],<,') is a complemented distribu-

tive lattice.

By corollary 2 we have

COROLLARY 3.Let F and G be two fuzzy logic formulae [2-5], then F = G (in fuzzy logic) if and only if F = G (in three-valued logic— $\{0,0.5,1\}$).

III. CONCLUSION

By the conclusion in this paper, we want to study the equality property of logic formula in lattice-valued logic (in special, in fuzzy logic), if and only if we study it only in three-valued logic, thus the infinite value problem becomes the three-valued problem, and the simplification, decomposition, composition and combinational switching systems of lattice-valued logic formula (in special, fuzzy logic formula) become much simpler.

REFERENCES

- [1] Birkhoff., Lattice Theory, 3ed ed., New York, American Mathematical society, 1967.
- [2] A.Kandel & S.Lee, Fuzzy Switching and Automata: Theory and Applications, Crane, Russak, New York, 1979.
- [3] C.V.Negoita & D.A.Ralescu, Applications of Fuzzy Sets to Systems Analysis, New York, 1975.
- [4] Xu Yang, Some properties of Fuzzy Logic Formula, to appear.
- [5] Xu Yang, Reducibility of Literal and Phrase on Fuzzy Logic Formula, Proc. of NAFIPS'88,278-282.