SOME REMARKS ON FUZZY IMPLICATION OPERATORS*

János C. FODOR

Computer Center, Eötvös Loránd University H - 1502 Budapest 112 , P.O.Box 157, Hungary

1. Introduction

There exist several constructions for fuzzy implication operators via conjunctions. In this paper we present a unifying approach to the generation of implications and we prove that for a rather general class of conjunctions (will be called f-norms) the generation process is closed. Besides, all well-known families of fuzzy implications are within our framework.

2. Background

Let I = [0,1] and $I_0 = (0,1)$. A function $T:IxI \rightarrow I$ is said to be a t-norm iff T is commutative, associative, non-decreasing and T(a,1) = a, $\forall a \in I$. A t-norm T is Archimedean iff it is continuous and T(a,a) < a, $\forall a \in I_0$.

A function $n: I \rightarrow I$ will be called *negation* if n is non-increasing and n(0) = 1, n(1) = 0. A negation is called *strict* if n is continuous and decreasing. A strict negation is called *strong* if n(n(a)) = a $\forall a \in I$.

Let \circ be any binary operation on I. Let us define four operation on I in the following way (see [1]):

- $a[A(\circ)]b := b \circ a$
- $a [f_n(\circ)] b := n(a \circ n(b))$, where n is a negation.
- $a [f(\circ)] b := sup \{ s \in I ; a \circ s \leq b \}$
 - := 0 if there is no $s \in I$ such that $a \circ s \le b$.
- $a [v_n(\circ)] b := n(b) \circ n(a).$

^{*}This work has been partially supported by OTKA-27-5-606.

Dubois and Prade proved the following theorem in [1]:

If * is the t-norm 'min' or * is an Archimedean t-norm then we have

$$\mathcal{F} \circ \mathcal{F}_{n} \circ \mathcal{F} (*) = \mathcal{F}_{n} (*)$$
 (1)

and

$$\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}_{n} \circ \mathcal{F} (*) = \mathcal{V}_{n} \circ \mathcal{F} (*)$$
, (2)

where n is a strong negation.

They noticed that this result is not "a complete answer to the problem of generating multivalued implication functions". For example, the following class defined by $a \rightarrow b = S(n(a), T(a,b))$ (where T is a t-norm, S is a t-conorm and n is a negation) or the implication $a \rightarrow b = b^a$ proposed by Yager [5] are outside of the above-mentioned framework.

3. F-norms and related concepts

We recall that a function $w:IxI \rightarrow I$ is called weak t-norm if $w(a,1) \leq a$, w(1,b) = b \forall $a,b \in I$ and $w(a,b) \leq w(c,d)$ when $a \leq c$, $b \leq d$ (see [2] for details and applications to strict preference relations). In this section we generalize this notion further.

Theorem 1. Let * be a given binary operation on I.

(a) If (1) holds then * has the following properties:

$$1*0 = 0*1 = 0*0 = 0 ; 1*1 = 1.$$
 (3)

$$1*b > 0$$
 when $b > 0$. (4)

$$a*b \le a*d$$
 when $b \le d$. (5)

(b) If (2) holds then * has the properties (3) - (4) and
$$a*b \ge c*b$$
 when $a \le c$. \Box (6)

The conditions (3) - (5) are necessary for a binary operation to fulfill the relation (1) and similarly, (3)-(6)

are necessary for validity of (2). However, it is easy to see that these conditions are not sufficient. Indeed, let $a*b = T_w(a,b)$ the well-known weakest t-norm. In this case (1) is false. Hence, it seems to be necessary to require some type of continuity in the second argument of *. On the other hand, it is also reasonable to suppose that $\{s; a*s \le b\}$ is non-empty \forall $a,b \in I$, i.e., a*0 = 0 for every $a \in I$.

Following these simple ideas, we introduce an operation in I playing a central role in this paper.

<u>Definition 1.</u> (a) A binary operation * on the closed unit interval I is called *f-norm* if it satisfies the following conditions:

- (i) 0*1 = 0, a*0 = 0 for every $a \in I$.
- (ii) 1*b > 0 for every b > 0; 1*1 = 1.
- (iii) $a*b \le a*d$ when $b \le d$.

(b) If * is an f-norm then a[$\mathcal{I}(*)$]b is called the right pseudocomplement of *.

(For t-norms and weak t-norms see [4] and [2], respectively.) We note that (i) and (iii) imply 0*b = 0 for every $b \in I$. Moreover, it is clear that every t-norm as well as every weak t-norm is an f-norm.

Denote \mathcal{F} the class of all f-norms satisfying the following (technical) requirement:

a*x is left-continuous with respect to x

on I for every $a \in I$.

(7)

Let now ~: IxI→I such that

- (a) a \sim is right-continuous with respect to x on I for every a \in I.
- (b) $1 \sim b < 1$ when b < 1; $a \sim 1 = 1$ for every $a \in I$.
- (c) $0 \sim 0 = 1$, $1 \sim 1 = 1$, $1 \sim 0 = 0$.
- (d) If $b \leq d$ then $a \sim b \leq a \sim d$.

Denote \mathcal{X} the set of functions \sim which fulfill

conditions (a) - (d). It is easy to see that $* \in \mathcal{F}$ implies $f(*) \in \mathcal{R}$.

For the sake of simplicity, denote $\dot{u} = s_n \circ s \circ s_n$. Now we can state the following result extending Theorem 5 of [3] and Proposition 2.3 of [2].

Theorem 2. (a) If
$$* \in \mathcal{F}$$
 then $* = u \circ \mathcal{F}(*)$.
(b) If $\neg \in \mathcal{R}$ then $\neg = \mathcal{F} \circ u(\neg)$.

Examples for f-norms:

(a) t-norms, weak t-norms and the following types of means (among others) are f-norms:

$$M_{\lambda}^{\mathbf{r}}(\mathbf{a},\mathbf{b}) = \begin{cases} \left[\lambda \mathbf{a}^{\mathbf{r}} + (1-\lambda)\mathbf{b}^{\mathbf{r}}\right]^{1/\mathbf{r}} & \text{if } \mathbf{a}\mathbf{b} > 0 \\ 0 & \text{if } \mathbf{a}\mathbf{b} = 0 \end{cases}, \text{ where } \mathbf{r} \in \mathbb{R} \setminus \{0\}.$$

It is easy to see (by taking limits) that

$$M_{\lambda}^{-\infty}(a,b) = \min(a,b) , \quad M_{\lambda}^{0}(a,b) = \begin{cases} a^{\lambda}b^{1-\lambda} & \text{if } ab > 0 \\ 0 & \text{if } ab = 0 \end{cases} \text{ and }$$

$$M_{\lambda}^{+\infty}(a,b) = \begin{cases} \max(a,b) & \text{if } ab > 0 \\ 0 & \text{if } ab = 0 \end{cases}$$

(b) Let S(a,b) be any t-conorm. Then the operation $*_S$ defined by $a*_Sb = \begin{cases} S(a,b) & \text{if } ab > 0 \\ 0 & \text{if } ab = 0 \end{cases}$ is also an f-norm.

4. Closure theorems

In this section we give generalized versions of the Theorem of [1] as well as Theorem 4.3 and 4.4 of [2].

Theorem 3. If $* \in \mathcal{F}$ then the relation (1) is true.

Proof. By definition we have the following chain of equality: $a[\mathcal{I}(\mathcal{I}_n(\mathcal{I}(*)))]b = n[\inf\{y; \ a[\mathcal{I}(*)]y \ge n(b)\}] = a[\mathcal{I}_n(*)]b, \ by \ Theorem \ 2. \ \Box$

Theorem 4. If $* \in \mathcal{F}$ is commutative then the relation (2) holds.

Proof. $a[\mathcal{I}(\mathcal{A}(\mathcal{I}_n(\mathcal{I}(*))))]b = \sup \{ x ; x[\mathcal{I}(*)]n(a) \ge n(b) \} = \sup \{ x ; n(b)*x \le n(a) \} = a[\mathcal{V}_n(\mathcal{I}(*))]b$. Here we used also Theorem 2. \square

It is obvious that our approach contains implications mentioned at the end of the section 2 as well as the three types of Weber [4].

REFERENCES

- [1] D. Dubois and H. Prade, A theorem on implication functions defined from triangular norms, BUSEFAL 18 (1984) 33 41.
- [2] J.C. Fodor, Strict preference relations based on weak t-norms, Fuzzy Sets and Systems, submitted
- [3] M. Miyakoshi and M. Shimbo, Solutions of composite fuzzy relational equations with triangular norms, Fuzzy Sets and Systems, 11 (1983) 53 63.
- [4] S. Weber, A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms, Fuzzy Sets and Systems, 11 (1983) 115 134.
- [5] R. Yager, An approach to inference in approximate reasoning, Int. J. Man-Machine Studies , 13 (1980) 323-338.