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1. Introduction

There exist several constructions for fuzzy implication
operators via conjunctions. In this paper we present a
unifying approach to the generation of implications and we
prove that for a rather general class of conjunctions (will
be called f-norms) the generation process is closed.
Besides, all well-known families of fuzzy implications are

within our framework.

2. Background

Let I = [0,1] and Io = (0,1). A function T:IxI-I
is said to be a t-norm iff T is commutative, associative,
non-decreasing and T{(a,1) = a , V a &€ I. A t-norm T is

Archimedean iff it is continuous and T(a,a) < a , V a € Io.
A function n:I-I will be called negation if n is
non-increasing and n(0) = 1, n(1) = 0. A negation is called
strict if n is continuous and decreasing. A strict negation
is called strong if n(n(a)) = a VaclI.
Let © be any binary operation on I. Let us define four

operation on I in the following way (see [1]):

a [4(9)] b = b oa
a [fn(O)] b := n(a © n(b)) , where n is a negation.
a [7(@)] b z sup { s €1 ; a©s =D}

:= 0 if there is no 8 € I such that a 9 s
n{(b) © n(a).

1A

b.

a [U,(0)] D
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Dubois and Prade proved the following theorem in [1]

If * 1is the t-norm ’min’ or ¥ 'is an Archimedean
t-norm then we have
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where n 1Is a strong negation .

They noticed that this result is not "a complete answer
to the problem of generating multivalued implication
functions".’For example, the following class defined by
a-b = S(n(a),T(a,b))(where T is a t-norm, S is a t-conorm
and n is a negation) or the implication a-b = b2 proposed

by Yager [5] are outside of the above-mentioned framework.

3. F-norms and related concepts
We recall that a function w:IxI-I is called wesak
t-norm if w(a,l) = a, w(l,b) =b V a,b €l and w(a,b) =

w(c,d) when a = ¢, b = d (see [2] for details and
applications to strict preference relations). In this

section we generalize this notion further.

Theorem 1. Let % be a given binary operation on 1.
(a) If (1) holds then % has the following properties:
1%0 = 0%*1 = 0x0 = 0 ; 1%1 =1, (3)
1*b > 0 when b > 0 . (4)
axb = a*d when b =d . (5)

(b) If (2) holds then ¥ has the properties (3) - (4) and
aXb =z c*b when a = c . a (6)

The conditions (3) - (5) are necessary for a binary

operation to fulfill the relation (1) and similarly, (3)-(6)
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are necessary for validity of (2) . However, it is easy to
see that these conditions are not sufficient. Indeed, let
a¥b = Tw(a,b) the well-known weakest t-norm. In this case

(1) is false. Hence, it seems to be necessary to require
some type of continuity in the second argument of *. On the
other hand, it is also reasonable to suppose that {s;a*s= b}
is non-empty V a,b € I, i.e., a*x0 = 0 for every a € I.
Following these simple ideas, we introduce an operation

in I playing a central role in this paper.

Definition 1. (a) A binary operation * on the closed unit
interval I is called f-norm if it satisfies the

following conditions:

(1) 0x1 = 0, a0 = 0 for every a € I.
(ii) 1b > 0 for every b > 0 ; 1x1 = 1,
(iii) a*b = a*d when b = d. .
(b) If * is an f-norm then af7(x)]lb is

called the right pseudocomplement of x.
(For t-norms and weak t-norms see [4] and (2],
respectively.) We note that (i) and (iii) imply O0%b = 0 for
every b € I. Moreover, it is clear that every t-norm as well
as every weak t-norm is an f-norm.
Denote F the class of all f-norms satisfying the
following (technical) requirement:
a*¥x is left-continuous with respect to x
on I for every a € I. (7)
Let now ~:IxI-I such that
(a) a~x 1is right-continuous with respect to x on I for
every a € 1.
(b) 1~b < 1 when b < 1 ; a~1 = 1 for every a € I.
(c) 0~0 =1, 1~1 =1, 1~0 = 0.
(d) If b =d then a~b = a~d.
Denote % the set of functions ~ which fulfill



conditions (a) - (d). It 1is easy to see that * € % implies
J(x) € XH.
For the sake of simplicity, denote U = .0 90 Yn

Now we can state the following result extending Theorem 5
of [3] and Proposition 2.3 of [2].

Theorem 2. (a) If %*x € % then %
(b) If ~&€ X then -~

U o g(x) .
J o u(~) .0

Examples for f-norms:
(a) t-norms, weak t-norms and the following types of means
({among others) are f-norms:
- [xaf + (1-0)bT1Y/T if ab > 0
Mx(a,b) = ) , Where r € R\ {0}.
0 if ab =0
It is easy to see (by .taking 1limits) that
{ a*bl X if ab > 0

M;®(a,b) = min(a,b) , M%(a,b)
0 if ab = 0

and

+o max(a,b) if ab > 0
M, {a,b) = ) .
0 if ab = 0
(b) Let S(a,b) be any t-conorm . Then the operation *g
S(a,b) if ab > 0

defined by a*Sb = is also an f-norm.
0 if ab = 0

4. Closure theorems
In this section we give generalized versions of the
Theorem of [1] as well as Theorem 4.3 and 4.4 of [2].

Theorem 3. If % € # then the relation (1) is true.
Proof. By definition we have the following chain of
equality : alI (s (9(*)))1b = nlinf{y; ald(*)]ly Z n(b)}] =

a[fn(*)]b, by Theorem 2. O
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Theorem 4. If x € % is commutative then the relation (2)
holds . '

Proof. a[ﬂ(d(yn(ﬂ(*))))]b = 8up { x ; x[9(*)In(a) =2 n(b) } =
= s8up { x ; n(b)*x = n(a) } = a[vn(ﬂ(*))]b. Here we used

also Theorem 2. 0O

It is obvious that our approach contains implications
mentioned at the end of the section 2 as well as the three

types of Weber [4].
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