COMPATIBILITY IN QUASI-ORTOKOMPLEMENTED POSETS

Ferdinand CHOVANEC

Technical University

O3L 19 Liptovský Mikuláš

Czechoslovakia

1. INTRODUCTION

One of the actual problems of the mathematical description of quantum mechanics is the problem of simultaneous measurement of several observables. In the classical Kolmogorov model [1] measurement of non-quantum observables is performed within the framework of Boolean G-algebra model.

For quantum mechanics observables there exists a model of quantum logics [2]. There are also observables in the quantum logics which have the classical character, i. e., their ranges are embeded into a Boolean G-algebra. The conditions showing when some observables have this property are called compatibility theorems. There are many results in this field using different notions of the compatibility [2],[3],[4].

A different axiomatic model for measurements of quantum mechanical observables based on fuzzy sets ideas, called an F-quantum space, is presented in [5], where this problem has been stated, too.

In the present paper we show that the Boolean algebras in a quasi-orthocomplemented poset may be embedded into a Boolean algebra.

2. DEFINITIONS AND NOTIONS

Let P be a poset (G-poset) with a quasi-orthocomplement \bot , i.e., with a mapping \bot : P \longrightarrow P such that:

$$/2.1/(a^{\perp})^{\perp} = a$$
 for any $a \in P$;

/2.2/ if
$$a \le b$$
, then $b \le a^{\perp}$;

$$/2.3/$$
 a \neq a for any a \in P ;

/2.4/ if
$$a_n = a_m^{\perp}$$
, for $n \neq m$, then there exists
$$\bigvee_{n=1}^{\infty} a_n := \sup_{n = 1}^{\infty} a_n \text{ in } P .$$

P is called a quasi-orthocomplemented poset /q o p/.

Every q- -algebra, suggested by Suppes[6], and every F-quantum space are examples of quasi-orthocomplemented posets.

A compatibility theorem for quasi-orthocomplemented lattice has been studied by Dvurečenskij [7].

Let $\mathfrak{G}(\mathbb{R})$ be the Borel \mathfrak{G} -algebra of the subsets of the real line \mathbb{R} . By an observable of \mathbb{P} we mean a mapping $\mathbf{x}:\mathfrak{G}(\mathbb{R})\longrightarrow \mathbb{P}$ such that :

$$/2.5/ x(A^{C}) = x(A)^{\perp}, AeG(R), A^{C} := R-A;$$

/2.6/
$$\mathbf{x}(\bigcup_{i} \mathbf{A}_{\underline{i}}) = \bigvee_{i} \mathbf{x}(\mathbf{A}_{\underline{i}})$$
, if $\mathbf{A}_{\underline{i}} \cap \mathbf{A}_{\underline{j}} = \emptyset$ for $i \neq j$, $\mathbf{A}_{\underline{i}} \in \mathcal{G}(\mathbb{R})$, $\underline{i} \geq 1$.

Let us denote by A(x) the range of an observable x, i.e., $A(x) = \{x(E): E \in A(R)\}$. Then A(x) is a Boolean σ -algebra of P

with the minimal and maximal elements $x(\emptyset)$ and x(R), respectively.

In accordance with the theory of quantum logics, we say that two elements a, b \in P are :

/i/ compatible /a \leftrightarrow b/ if a \wedge b, a \wedge b, a \wedge b \in P and a = a \wedge b \vee a \wedge b, b = a \wedge b \vee a \wedge b;

/ii/ strongly compatible /a $\stackrel{\$}{\longleftrightarrow}$ b/ if a \longleftrightarrow b \longleftrightarrow a $\stackrel{!}{\longleftrightarrow}$ a .

We say that two nonempty subsets A and B of P are compatible /strongly compatible / if a \Leftrightarrow b /a $\stackrel{\$}{\Leftrightarrow}$ b/ for all a \in A, b \in B.

A nonvoid subset A of P is said to be f-compatible /"f" for finiteness/ if for all $a_1, \dots, a_{n+1} \in A$ we have : /i/ $u := a_1 \wedge \dots a_n \wedge a_{n+1} \in P$, $v := a_1 \wedge \dots \wedge a_n \wedge a_{n+1} \in P$; /ii/ $u \vee v = a_1 \wedge \dots \wedge a_n$.

The subset ACP is strongly f-compatible if $A \cup A^{\perp}$ is f-compatible, where $A^{\perp} = \{ a^{\perp} : a \in A \}$.

3. COMPATIBILITY THEOREM

We say that P has c-G-distributive property if a \Leftrightarrow a_n, $n \ge 1$, then $a \land (\bigvee_{n=1}^{\infty} a_n) = \bigvee_{n=1}^{\infty} (a \land a_n)$.

Any F-quantum space has the c-G-distributive property. THEOREM 1. Let P be q o p with the c-G-distributive property and let $\{A_t:t\in T\}$ be a system of Boolean subalgebras of P. The following statements are equivalent:

- /1/ U_t A_t is strongly f-compatible .
- 72/ There is a Boolean algebra of P containing all A_t , te T. THEOREM 2. Let P be q o p with the c-G-distributive property and let A be a nonempty set of P. Then, in order to exist a Boolean algebra of P containing A, it is necessary and sufficient for A to be strongly f-compatible.

A similar theorem for Boolean G-algebras in fuzzy quantum spaces has been proved in [8].

REFERENCES

[1] Kolmogorov, A. N.: Grundebegriffe der Wahrscheinlichkeitsrechnung, Berlin, 1933:

- [2] Varadarajan, V.S.: Probability in physics and a theorem on simultaneous observability. Communications in Pure and Applied Mathematics, 15/1962/, 189-217 Errata, 18/1965/.
- [3] Brabec, J.: Compatibility in orthomodular posets. Časopis pro pestování matematiky, 104 /1979/, 149-153.
- [4] Neubrunn, T., Pulmannová, S.: On compatibility in quantum logics. Acta Math. Univ. Comenian, 42/43 /1983/,153-168.
- [5] Riečan, B.: A new approach to some notions of statistical quantum mechanics. Busefal, 35 /1988/, 4-6.
- [6] Suppes, P.: The probability argument for non-classical logic of quantum mechanics. Phil.Sci., 33 /1966/,14-21.
- [7] Dwurečenskij, A.: Compatibility theorem for quasi -orthocomplemented lattices. Submitted for publication.
- [8] Dwurečenskij, A., Chowanec, F.: Fuzzy quantum spaces and compatibility. Inter. J. Theor. Phys., 27/1988/, 1069-1082.