ON THE REPRESENTATION OF OBSERVABLES IN FUZZY - QUANTUM SPACES

Anatolij Dvurečenskij, František Kôpka

Let P be a quantum logic, $x,y:\mathcal{B}(R)\to P$ be two observables and $x(\mathcal{B}(R))\subset y(\mathcal{B}(R))$, then there is a Borel measurable function $T:R\to R$ such that $x=y\circ T^{-1}$ (see e.q. [1], [2]). In this note, we present a generalization of this lemma for observables on quantum logic to 6 - homomorphisms on weakly orthocomplemented 6 - posets. As a special case we obtain also a representation lemma in F - quantum spaces ([3], [4]). This result enables us to prove a variant of the ergodic theorem in F - quantum spaces ([5], [6]) and probably some other limit theorems, too ([7]).

We shall say that a partially ordered set P with a mapping $a \rightarrow a'$ is a weakly orthocomplemented 6 - poset, if (i) $(a')' \ge a$ for every $a \in P$; (ii) if $a,b \in P$, $a \le b$, then $b' \le a'$; (iii) if $(a_i) \subset P$, $a_i \le a'$; $(i \ne j)$, then there exists $\bigvee_i a_i$ in P; (iv) $a \ne a'$ for every $a \in P$. These posets were studied, e.q. in [8].

A set F of functions $f: X \rightarrow \langle 0, 1 \rangle$ is an F - quantum space, if the following conditions are satisfied: a) F contains the constant function 0 and does not contain the constant function 1/2; b) if $f \in F$, then $f' = 1 - f \in F$; c) if $f_n \in F$ (n = 1, 2, ...), then $\sup_{n \in F} f_n \in F$.

It is clear that every F - quantum space satisfies the above assumptions (i) - (iv).

J. Pykacz ([9]) suggested to substitute the property c) in

F - quantum space, by a weaker one : c_1) if $f_n \in F$ (n = 1,2,...) and $f_n \le f_m$ ' = 1 - f_m (n \neq m), then $\sup f_n \in F$.

Evidently, also the weaker form of an F - quantum space satisfies the above assumptions. It is simple to show that it is not true that $f \lor f' = 1$, in general.

DEFINITION 1. Let $\mathcal B$ denote a $\mathcal G$ - algebra of subsets of a nonvoid set Y. Let P be a weakly orthocomplemented $\mathcal G$ - poset. A mapping $x:\mathcal B\to P$ is called $\mathcal G$ - homomorphism if

- 1) $x(E^c) = (x(E))$, for every $E \in \mathcal{B}$;
- 2) $x(E) \le (x(F))$, if $E, F \in \mathcal{B}$, $E \cap F = \emptyset$;
- 3) if $E_n \in \mathcal{Q}$ (n = 1, 2, ...) and $E_i \cap E_j = \emptyset$ for $i \neq j$, then $x(\bigcup_n E_n) = \bigvee_n x(E_n)$.

In particular, if $\mathcal{B} = \mathcal{B}(R)$ ($\mathcal{B}(R)$ is the set of all Borel subsets in R), then \mathfrak{G} - homomorphism x is called an observable.

In [10] the following theorem is to prove.

THEOREM 1. Let $\mathcal B$ be a $\mathcal S$ - algebra of subsets of a set $Y \neq \emptyset$ containing a countable generator of $\mathcal B$. Let P be a weakly orthocomplemented $\mathcal S$ - poset. Let $y,z:\mathcal B \to P$ be $\mathcal S$ - homomorphisms such that $y(E) = y(\emptyset)$ iff $E = \emptyset$, and $z(\mathcal B) \subseteq y(\mathcal B)$. Then there is a $\mathcal B$ -measurable mapping $T: Y \to Y$ such that $z = y \circ T^{-1}$.

In order to prove the more general assertion than Theorem 1, we need the further notions.

DEFINITION 2. Let $\mathcal B$ be a δ - algebra of subsets of a set Y. A set $\mathcal A \subseteq \mathcal B$ is said to be a maximal δ - filter, if (i) $\mathcal A \neq \emptyset$; (ii) $G_n \in \mathcal A$, $n \ge 1$, implies $\bigcap_n G_n \in \mathcal A$; (iii) if $G \subset H$, $G \in \mathcal A$, $H \in \mathcal B$, then $H \in \mathcal A$; (iv) $\mathcal A$ contains exactly one of the elements A, A^c for every $A \in \mathcal B$.

DEFINITION 3. A G-algebra B is said to be G-perfect,

if any maximal δ - filter A of B is determined by some point $t \in Y$, i. e. $A = \{E \in B : t \in E\}$, for some $t \in Y$.

THEOREM 2. Let \mathcal{B} be a \mathcal{G} -algebra of subsets of a set $Y \neq \emptyset$. Let P be a weakly orthocomplemented \mathcal{G} -poset. Let $y,z:\mathcal{B}\longrightarrow P$ be arbitrary two \mathcal{G} -homomorphisms, such that $y(E)=y(\emptyset)$ iff $E=\emptyset$, and $z(\mathcal{G})\subseteq y(\mathcal{G})$. Then there is a \mathcal{B} -measurable mapping $T:Y\longrightarrow Y$, such that z=y o T^{-1} iff \mathcal{G} is \mathcal{G} -perfect. For the proof of the Theorem 2 see [11].

REFERENCES

- [1] Dvurečenskij, A., Riečan, B.: On the individual ergodic theorem on a logic. CMUC 21 (1980), 385 - 391.
- [2] Varadarajan, V. S.: Geometry of quantum probability spaces.

 Princeton 1968.
- [3] Riečan, B.: A new approach to some notions of statistical quantum mechanics. BUSEFAL 35 (1988), 4 6.
- [4] Dvurečenskij, A., Riečan, B.: On joint observables for Fquantum spaces. BUSEFAL 35 (1988), 10 - 14.
- [5] Harman, B., Riečan, B.: On the individual ergodic theorem in F quantum spaces. Submitted to Proc. Poznaň 1987.
- [6] Pulmanová, S.: Individual ergodic theorem on a logic. Math. Slovaca 32 (1982), 413 416.
- [7] Harman, B., Riečan, B.: On the martingale convergence theorem in quantum theory. In: Trans. Ninth Prague Conf. Infor. Theory. Academia, Prague 1983, 275 280.
- [8] Cattaneo, G., Mania, A.: Abstract orthogonality and orthocomplementation. Proc. Camb. Phil. Soc. (1974), 76, 115 132.
- [9] Pykacz, J.: Quantum logics and soft fuzzy probability spaces.

 BUSEFAL 32 (1987), 150 157.
- [10] Dvurečenskij, A., Riečan, B., Kôpka, F.: On a representation theorems of observables in ordered spaces. Subm. to Proc. Poznań 1988.
- [11] Dvurečenskij, A., Kôpka, F.: On representation theorems for observables in weakly complemented 6- posets. Subm. to DEMONSTRATIO MATHEMATICA.

AUTHORS ADRESS:

Anatolij Dvurečenskij, Mathematical Institute, Slovak Academy of Sciences, Obrancov mieru 49, CS - 814 74 Bratislava, Czechoslovakia.

František Kôpka, Technical University, Brezová 488/10, CS - 031 04 Liptovský Mikuláš, Czechoslovakia.