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INFERENCE ON PARAMETERS IN POSSIBILITY DISTRIBUTIONS,
WITH SPECIAL REFERENCE TO POSSIBILISTIC REGRESSION

Wolfgang NATHER

Mining Academy of Freiberg
Department of Methematics
9200 Freiberg, GDR

Summary: The possibilistic linear regression is used to point

out the nonstatistical character of possibilistic inference. It
suffices to have a sample size which ensures identifiability of
the parameters. In a more general setting it is shown that Archi-
medean decomposable measures preserve statistical properties,

but possibility is non-Archimedean.

1. Introduction

At first we recall the basic notions in possibility theory (see
e.g. ZADEH /6/, DUBOIS/PRADE /1/), Let $y; be a 6-algebra of sub-
sets from the universe U which contains all one-point sets {x},

x€U. A set function M&; —[0,1] with M(#) = 0, T(V) = 1 and
va,B€ by: T(AUB) = max{Ti(a), T(8)} )

is called possibility measure (abbr.: pm) on (U,ﬁU). Note that

T{x}) =: g(x) 5 x€U (2)
defines the possibility distribution function (abbr.: pdf) of T
which leads to

M(A) = sup g(x) | (3)
XEA
for a crisp subset A of U and to
T (A) = sup minipm, (x), g(x) ' (4)
iy {/*A & }

for a fuzzy subset A of U with membership function/LA.
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Let (V,f;) be another measurable space. Any (fyU,ﬁv) measurable
mapping Y| U —V is called possibilistic variable (abbr.: pv)

and the pm'TfY on #, is generated by
Vaek . W) =T () (5)
As a consequence of (1) the pdf oquY is given by

gy(y) =T({x: ¥(x)=y}) =W(Y(§J)=y{x}) = gug)r_yg(x) . (6)

Similarly the pm and the pdf induced by a measurable mapping
of the pv Y, say £(Y) = Z, is given by
T,(B) =Ty (£71(B))

g,(2) =To({y: £(y)=2}) = sup g (y) (7)
7 i 5 oS3 By
Note that in the frame of fuzzy set theory (7) is known as

exiension principle.
In the following we are interested in possibilistic vectors, i.e.
in pv's Yl U—RP, Let Y = (3{1,...,Yn)‘II a possibilistic vector.
The merginal pdf is given (as a special case of (7)) by

gYi(yi) = 8up  gy(§qseee,¥y) 5 i=1,...,0 . (8)

B b ,
The possibilistic vector Y = (Y1,...,Yn)Thas min-related (nonin-

teractive) components iff
gY(Yol,---,yn) = min (gY1(Y1),---,gY (yn)) . (9)
n

Our problem is the following: Assume the pdf of a pv Y is given
up to an unknown parameter 4, say gY(y,J7;{f6(). Assume further,
there are available n observations of Y, say Vyseeesp,e How to
"estimate" y ? How to evaluate such estimates? What are main
differences between possibilistic and probabilistic inference?

To answer this questions we suppoée:

Asg,.1: The sample Fyreces¥y is interpreted as realization of an
n-dimensional possibilistic vector Y with min-related identically
distributed components, the pdf of which is gY(y,J)l
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' A
An estimtor J = ft?(Y,,,...,Y ) of 4 is, again, a pv generated by

the mapping 17|Rn —+ @), With (7), Ass.1 and (9) the induced pdf
of 47 for given o writes

83/"7(1;) = 3’(y1,,?t}?y - min{gy(y1 OJ)QOOOQSY(ynQ'\?)} (10)

To evaluate ¥ we take & suitable loss function L(J O)'@x@-*[o 1]
which measures the relative loss or the degree of loss. Note that
L(+, ﬁ) can be interpreted as the membership function of the fuzzy
set LOSS. Having in mind statistical inference, the risk of 1? is
expressed by .

RP(.J,:?) - ; L(,") arp, . (11)
Following ZAéﬁH's definition of probability for fuzzy events we
have the interpretation

Rp (7, ) = p(Fe10ss) . (12)
Anslogously we define the possibilistic risk ofJ by (see (4))

wa,m =’:T(Je L0SS) = g':.p@ min (L(,t), 313/4,(1:)) . (13)

We will use the possibilistic linear regression as an example

to discuss the above questions.

2, Possibilistic linear regression

Let us consider pdf's gY(y,x?') of the following form:

gy(y, W) = 8(y-27(2)%) 5 yeR' ;4€ RT ; zeRE

where f | R — RT is a known (setup~) function and s fulfils

(14)

Ass,2: The function 8 is continuous, symmetric about the origin

and monotonically decresasing on R+, with 8(0)< 11

Note that (14) describes a linear regression model
Y = £7(z)d + E (15)
where the "error" E is a pv which follows the pdf s.
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Assume, for fixed design points z,€VC RE we observe i (i=1,...4n)
We want to estimate ¥ by & linear estimate

¥ - CF 5 ¥ = (Fyseeesyy)’ (16)
where C is an appropriate (rxn)-matrix. Our objective is to find
the "BLUE", This requireé a definition of unbiasedness for ’l/}t
which should be a formalization of the following demand: If all
observations lie on a "straight line" fT(z)J then an unbiaseds

coincides with this straight line coefficient 4.

A
Def,1: The linear estimator J from (16) is called unbiased iff
1V RT Vie{1,..,nbs y; = £z — F =4 0 (17

A

It is easy to see that < = Cy is unbiased iff
CF = Ir 3 F = (f(Z1),oca,f(zn))T . (18)

Noté that (18) is the same unbiasedness condition as known from
probabilistic linear regression. .

The BLUE 3*minimizes, for a certain loss L, the poassibilistic
risk (13) w.r.t. all unbiesed estimators (16).

A
Ags,3: The loss function L(«,7) is a continuous and monotonically
A
increasing function of N =4I|, )l Euklidean distancel

A
Then the BLUE 4" is, roughly spoken, & linear unbiased estimate
the pdf of whichis closest to . For more detailed results let us
reveal the structure of the pdf gwq).

Let e; = y;~f (zi)»\? and e = (eq4,.0.58, ) . Since for unbiased'l?
g3y () = '#+32£tmin {s(eq),...,8(e )§ = 53/4}=0(t"“” (19)
it suffices to consider
83/1}._._0(11) =3 g;}(u) = cz:ﬁ min{s(e.,),...,s(e )} (20)

i.e, without loss of generality we can transform the coordinates
of & so that 4= 0 is the true parameter. Thus, with
gE(e) = min{8(61),.o.,8(en)} (21)
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for further investigations we use

gﬁ(u) = C::g gple) . (22)
Thus, the riask (13) writes, with Ass.3
A . :
Rw(af,d') = 1:sx“ux:%"’m:i.n( Lhul), g&(u) ) . (23)

Now consider the o« -cuts of .gs’, i.e. (gs)d’m {u: gﬁ(u);d};
«€(0,1] . At first we have (the proof is omitted):

Lemma 1: The o~cut of g4 is the image by C of the o -cut of gEl

Due to the min-relatedness (Ass.1) and the unimodaiity of s
(As8.2) it holds:

Lemme 2: (gE)g is an n-dimensional cube with centre zerol

Note that the corners of (gE)oL are given by the set

f=a 037 = g5 W={-1,1}" 5 s(q) = . (24)
Since (gE) ) 18 a convex polyhedron from convex analysis it is
known:
Lemma 3: (g})‘,c is a convex polyhedron, the corners Uso of which
only arise as images by C of the corners from (SE)eé’
Uy, = 9 0% ; xell

Coming back to the BLUE we now can say: Choose C so that, for
every o €(0,1], looked from the origin, the most distant cornér
of the image (g3l* is as near as possible, Somewhat more exactly
it holds:
Theerem 1: If C* fulfils (18) and is a solution of

¢ (C) := ]stlég””Cx" 4 C:g%glr s A = {-1,13" (25)
A

then + = ¢y 1is BLUEA
Proof: RW(J,'J) = gsup min( L(lull), g%(u) )

ueR
= gup min(of, sup L(Hull) ) = g
ol ue(ga)d
where o is solution of the "fix-point-equation" o = sup L(lul).

ue(&g&,)‘,‘o
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Using the monotonicity of I and Lemma 3 this reduces to
A
oo = L(a, (C)) = R(#,7#), Thus, minimization of (C) leads to
o)
minimization of the riskl

"
Now let us present a further characterization of 4,

A
Theorem 2: Assume F is of full rank r. Then the BLUE &= C*y

uses only r observations out of the n observations Vi i=1,4ce4n0

Proof: a) Let #=Cy be unbiased, c=(c1,...,¢n) with c,eR" and
(after possible rearrangement) C=(C1502) where C; is rxr and Co
is rx(n-r), The unbiasedness condition CF=Ir needs r degrees of
freedom. Only the remaining n-r degrees we can use for optimi-
zation, i.e. the construction of the BLUE consists in determining
a certain 02.

b) The corners of the image, Cx with xe, can be written, symbo-
lically: Cx = 2:*01 . According to (25) we are interested in the
vector Cx with maximum length. Thus, we have to add the Cy» fur-
nished with a certain pattern of signs, to reach a maximum length
vector., At every step j of this addition procedure we have, with

CJ== §1ici ’ j=1,...,n-1,
hedil ¢ max (edvey, gl led-cyg, 1) =2 ped*’) (26)

J
i.e. {e }J =1,...,n

length and with llcB = su% loxll. In (26) the strict inequality
xel

holds iff ¢ +1#0 Thus, the length of c? becomes as small as pos~-

builds a sequence of vectors with nondecreasing

sible if n-r out of the cy (i.e, & certain Cz)vaffect no increase
of length , i.e., if n-r out of the c4 are zero, Hence, after re-

arrangement, C'=(C1§O), i.e. the BLUE-matrix C* picks out only r

of the n observations ]

Remark 1: If a linear functiona]xQ £T¢ i to be estimated by a

T

linear estimate'm E: °iyi = ¢y the criterion (25) simplifies to

T
i%%lc x|l = 2: leyl = min and the side condition (18) changes to
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Te = £, This special case is discussed in NATHER /2/1

F

Remark 2: In the speciel case r=1 and f=1 the parameter & in (14)
reduces to a common location parameter. The unbiasedness condition
(18) for a linear gstimator 3 = igciyi writes §1ci = 1, Accor-
ding to Thgorem 2, only one observation ¥y is needed for the BLUE
of 4} . Since the y4 are identically distributed, any single obser-
vation can be taken as the BLUE, i.e.-3*= Yy This example shows
drastically the nonstatistical character of posaibilistic‘inference:
The estimate cannot be improved by increasing sample size, Results
which take place one time are possible (but not necesserily pro-
bable) and a second observation in fhe same context gives, in the
sense of a possibilistic evaluation, no further information.
Notions as consistency of estimates, central limit theorems a.s.o.
are without sense. These problems are discussed in some more

detail in NATHER /2/1

The optimization problem (25) can be solved, in principle, before

experimentation., If we do so then, indeed, we have to realize

only r observations. Thus, the so-called saturated designs play
an important role in possibilistic regression. For more details

on planning for possibilistic regression see NATHER /3/.

3s The extreme character of pessibilistic inference

Let us discuss the question whether there are "intermediate"
meagures "between" probability and possibility which do not share
the extreme nonstatistical character of possibility. We follow
the WEBER-concept of decomposable measures (s. WEBER /5/).

Def,2: A set function m| $;;— [0,1] with m(f#)=0, m(U)=1 and
m(AUB) = m(A)] m(B) or m(g Ay) =.é m(A;) (27)

is called | - or 6'-l-de¢ommable, where | is a t-conorm i.e. a




114

nondecreasing in each argument, commutative and associative

binary operation with O as unitll

Note that a possibility measure T is | ~decomposable with | =max,
The crucial point is that |=max is idempotent: mex(a,a)=a. This,
together with min(a,a)=a, turns out to be essentially for the non-
statistical character of possibilistic inference: Repeated mea-
surements do not contribute to change of sample distribution.

Note that | =max is the only idempotent t-conorm, since with b<£a
a=al0<£alb < ala=a = a=a2alb = max(a,b) . (28)

A continuous t~conorm is called Archimedean iff -

Yae (0,1): ala > a - (29)

Thus, possibility is characterized by a non-Archimedean t-conorm
and plays, accordind to (28), a singular role in the set of 1-de-
composable measures,

Archimedean l-decomposability is only a modification of additivity.
This follows from LING's representation theorem (see WEBER /5/):
There exists an increasing and continuous gl [0,1]—= [0,®] with

g(0)=0 such that

ald = g (g(a) + g(b)) (30)
where the pseudo-inXerse g('” writes
M DI 2{ g~ ' (y) if y<1 (31)
1 if y>1

The function g, the so-called additive generator of |, is unique

up to a positive factor and is called strict if g(1)=o. A non-
gtrict g with g(1)=1 is called normed.

Here we discuse the following special case: Let P be a probability
measure on (U,ﬁU) and g a normed generator of & non-strict Archi-

medean 1. Then, as & consequence of (30),
m = g loP (32)
ig 6-l~decomposable (A more general theorem is given in WEBER /5/).

Moreover, for (membership~) functions ,LlU—" (0,1] an integral



115

can be defined which via (30) reduces to Lebesgue-integrals (see
WEBER /5/), which in case of (32) writes

-1
Lo := Jmar) . (33)
i{/\4, m g (U/rt )
Note that f
4 = 1 < 1 34)
[{/u,1dP I{/uzdP 1 I{/K‘l m ) folm (

since with g also g is increasing.

Consider now a | -decomposable measure space (U,fU,m(#)) where
m(d) is generated by P(J4) via (32) and depends on an unknown
parameter V€O, Let Y|U — R® be a measurable (sample-) vector
and '3(3() an estimator of /. Then, the induced measure m&/& is
given by

nge () = a@ (W), = &7 2T = gTorgw) o (35)

A
Analogously to (11) we define the risk of# (wer.t., loss L and
evaluation with m) by
R B = S 16,0 Lngyy (36)
which with (33), (35) and (11) can be written as

A -1 , . _ -1 A
R (F,0) = g (éw, YaBs,0) = &7 (RGN . (37)

Due to the monotonicity (34) we have the following result:

A A

Theorem 3: Let 1’ be better than #2 w.r.t. L and probabilistic
evaluation. Then 17'1 is better than q}’ w.r.t. L and evaluation

with m where ms =g 1aP/~ , i=1,21
i Vi

Hence, if we accept the ordering by the risk (36), an estimator
which is optimal for (U,ﬁU,P(q?)) is also optimal for (U,ﬁU,m(V))
with m = g'1o P. Note. as a special case, that an improvement of
probabilistic evaluated estimators by increasing sample size

'leads to an improvement w.r.t. the associated m, too. From this

point of view inference on Archimedean l-decomposable measures

m(«y) preserves, qualitatively, the statistical character.
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Quantitative statements on the more or less strong statistical
character of inference on m($) = g~ o P(+}) are controlled by the
degree of ascent of g-1.
To have an example in mind let us mention SUGENO's A -fuzzy-
measures (see SUGENO /4/, WEBER /5/) which are 1l ~decomposable
with

alb = min (a+b+Aab, 1 ) 53 A > -1 . (38)

Here 1 is non-strict with the normed generator

gh(X) = %’% ; go(x) =h}-§8 gh(x) = X (39)
and its pseudo-inverse
- ’ Vo
g( ”(y) - {\ [(1+)Y-11/2 for y<1 . (40)
1 for y>1
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