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Abstract

Extensive experiments have been conducted by cognitive psychologists
to verify models of human categorization and concept formation
processes. These experiments frequently employ response time
measurements to identify poor members and poor nonmembers of a given
category. This paper examines the applicability of the same response
time methodology to the problem of verifying fuzzy membership functions.
Experimentally obtained response time measurements were found to
correlate well with empirically derived fuzzy set membership functions.
The general applicability of response time methodology to the problem of
membership function verification is discussed.

Introduction

In their book "Fuzzy Sets and Systems: Theory and Applications”, Dubois
and Prade (1980) title the first chapter with a question - "Where Do
"They" Come From ?"; "they" of course being membership functions. A
multitude of approaches have been suggested and often implemented to
answer the question. Exemplification (Zadeh 1972), various statistical
methods (Hersh and Caramazza 1976, Civanlar and Trussell 1986), relative
preferences (Saaty 1974) and parametric methods (Kuz'min 1981) to
enumerate a few approaches. Each of these approaches has its own unique
technical and philosophical characteristics, the illumination of which will
be left to others.

Now that a number of fuzzy set researchers are strongly on the scent of
generating membership functions, a new question comes to mind - How Do
We Know "They" Are Realistic ? Fuzzy sets have been advanced as a
mathematical formalism for vagueness, and vagueness is a topic which
falls under the rubric of concept formation and categorization in cognitive
science. Vagueness exists because concepts and categories do not have
clear boundries. A realistic fuzzy set is therefore one which is consistent
with the theoretical basis of its raison d'etre, human categorization and
concept formation processes. A fuzzy set inconsistent with the
underlying cognitive process calls to mind Marcellus's famous quote in
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Hamlet that "something is rotten in the state of Denmark." We turn now to
consider cognitive science's understanding of categorization and concept
formation.

Models of categorization and concept formation fall broadly into two
classes, semantic network models and set theoretic models. Collins and
Quillian's (1969) model depicted in figure 1.1 provides a overview of the
principals underlying most semantic network models. Such models
assume that concepts exist as nodes on a network connected by relations
such as an arabian "is a" horse. Verification of the proposition "an arabian
is a horse" requires a comparison of the network's relation between
arabian and horse with that asserted in the proposition. Semantic
network models address issues somewhat different from those we are
interested in and we will not consider them further.

Animal

Mammal
Bird

Horse

Arabian
Robbin  Canary Sparrow

Figure 1.1. Collin's and Quillian's Semantic Network Model.

Three theories account for most of the set theoretic models: (a)
prototype theory, (b) feature comparison and (c) instance comparison.
Before considering these theories in greater detail we will review the
typicality effects from which they draw most of their empirical support.
More typical category instances: (1) are learned before less typical
instances, (2) take less time to verify as category members than less
typical instances, (3) are named more frequently when subjects are asked
for examples of a given category, (4) are identified as anchor points in
linguistic hedges and (5) are reliably rated by subjects as being more
typical.

Rosch (1973) argued that most natural categories have an internal
structure which is not comprised of equivalent undifferentiated instances.
Categories have a "core meaning" composed of the category's "clearest
cases” (prototypes) which is surrounded by increasingly less typical
instances of the "core meaning." In Rosch's view natural categories do not
have clear boundries.

Rosch (1973) hypothesized that the time for subjects to respond
affirmatively to statements like "an X is a Y" (where X is an instance and Y
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is a category) would be less for central category members than for
peripheral category members. To explore this hypothesis Rosch presented -
subjects with instances (e.g. pear) of various categories (e.g. fruit).
Subjects rated the instance as a very good fit to a very poor fit by
checking one of seven blank spaces. From this pool of ratings Rosch
generated four kinds of instance-category pairs, false central, false
peripheral, true central and true peripheral. The time for subjects to
respond true or false to examples of each kind of instance-category pair
was measured. Subjects took less time to respond to central instance
category pairs than to their corresponding peripheral instance category
pairs.

Prototype theory describes the content and structure of categories and
not the actual representation process itself which may be based on images,
feature lists or structural descriptions. All that is required of processing
models is that they not violate the known behavior of prototypes. Thus a
processing model should not produce shorter category verification times
for poor members than for good members.

Smith, Shoben and Rips (1974) believed that categorization was based on
a feature comparison process. They argued that a term's meaning could be
represented by a combination of defining features and characteristic
features. Defining features are those on the term's feature continuum
which are more essential to the term's meaning. Characteristic features
are more accidental and contribute less to the term's meaning. In general
the response time depends on the degree of similarity between the
instance and the category.

Brooks (1978) demonstrated that subjects are often not able to -
explicitly state defining attributes and categorization rules. His
experimental subjects were able to develop concepts unconsciously and
nonanalytically. When learning pairs of letter strings with cities or
animals (e.g. MRRRRRM - bison, VVTRXRR - Paris) they were able to
correctly classify instances as old world or new world. Brooks believed
that instances were identified as category members by their global
similarity to known category members. A flower would be categorized as
such because it vaguely resembled something like that seen previously.
Medin and Smith (1981) advanced an instance comparison model similar to
Brooks'.

Figure 1.2 provides an overview of how one would categorize a house as
belonging to the set of nice houses based on each of reviewed
categorization theories.
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Model Categorization Question(s)

Feature Comparison How do the features of this house relate to the
features of the category of nice houses ? For
example, does it have a swimming pool ?

Instance Comparison How does this house compare with other nice
houses | have seen ?

Prototype Theory How does this house compare with the nice house
prototype(s) ?

Figure 1.2. Categorizing a house as a nice house.

In practice, RTs are not as deterministic as might be suggested by the
aforementioned categorization theories. Subjects may employ a variety of
heuristics for responding true or false to a series of phases of the form
"an ‘'instance' is a 'category'"; heuristics which cannot be employed in
single instance real life situations. What is important is the general trend
of RT in categorization experiments: faster responses for a category's
clear members and nonmembers than for its peripheral members and
nonmembers.

With a theoretical basis for understanding typicality effects and how
they can identify central and peripheral category members, we are free to
explore their use in verifying membership functions. In particular we will
concentrate on RT measurements and expect higher RTs where 0 < p < 1
than where u = 0 or 1.

Experiment

Response time behavior to agree or disagree with statements of the form
X (an instance) is Y (a category) has been studied extensively in
categorization and concept formation experiments. The time to agree or
disagree is consistently higher for poor members and poor nonmembers of
a category than for clear members and clear nonmembers. Accordingly
response time peaks should occur in the vague region of fuzzy sets where 0
< py(x) < 1 and can been seen in a general sense as a validation method for

membership functions. Response time data was gathered to demonstrate
the principle of membership function wverification with membership
functions derived from subjects' agree/disagree responses.



Method:

Subjects. Fourteen unpaid mathematics and computer science volunteers
at the State University of California at San Francisco served as subjects.
Half of the subjects were at least generally familiar with the theory of
fuzzy sets and half reported no prior exposure to fuzzy set theory.

Stimuli. Phrases of the form X is Y on a computer screen were used as
the stimuli. X ranged in value from 54 degrees fahrenheit to 86 degrees
fahrenheit outside air temperature graduated in one degree increments.
The linguistic variable Y took on the values cool, warm and hot for each
value of X.

Procedure. Subjects were run individually. The test phrases were shown
on the screen of a Macintosh computer and the response time for subjects
to agree or disagree with each phrase was recorded. Below each phrase on
the computer screen was an agree button and a disagree button for
responding to the phrase. Buttons were selected using the Macintosh's
mouse. After responding to a phrase, subjects pushed the next button to
view a new phrase. Use of the next button forced subjects to center the
mouse between agree/disagree responses and provided subjects with an
opportunity to rest between phrases as necessary. A sample test phrase is
shown in Figure 2.1.

Subjects responded to a randomized set of phrases and to a
nonrandomized set of phrases. For the nonrandomized phrases X was
monotonically increasing from 54 degrees to 86 degrees for each of the
linguistic Y variables cool, warm and hot. Half of the subjects responded
to the randomized phrases first and half of the subjects responded to the
nonrandomized phrases first. The range of X and Y values was provided to
subjects before beginning the experiment. All subjects participated in a
short practice run with height data prior to commencing their timed

temperature runs. RT was collected in seconds and is reported throughout
this paper in seconds.

54 degrees is cool

(vivagres) ((memt ) (mgres )

Figure 2.1. Phrase response dialog for experiment.
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Discussion of Resuits

Raw RT data from a number of the subjects required adjustment to
address two problems. Several of the subjects reported the randomized
run to be a "mind numbing” experience and despite admonitions to the
contrary engaged in talking and space gazing. RT measurements which
were known to be corrupted in this way were replaced with the average
value of the two adjacent RT measurements after the data was
monotonically ordered. A second source of difficulty arose from obviously
incorrect agree/disagree responses in the randomized runs. These
discrepancies were addressed by not recognizing changes in the
agree/disagree variable unless two successive same values were obtained.

During the nonrandomized runs subjects appeared to slowly decrease
their RT for a given linguistic variable Y. When Y changed response time
increased and subsequently began decreasing again. Decreasing response
time behavior for a given Y is generally consistent with learning of a
repetitive task. From visual observation it was not obvious whether there
was a RT learning effect for the randomized runs.

Figure 3.1 depicts S1's nonrandomized RT data for all values of X for Y =
cool. S1's randomized RT data in figure 3.2 for the 99 XY pairs from all
three Y values depicts the generally higher standard deviation for
randomized RT data noted in figure 3.3. Data in figure 3.2 is shown in
randomized order as presented to Si.

y
6 . .
first disagree
54
44+
RT
31 last agree
2+
1 4 ——— W
0 e et~

54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86
Degrees F
Figure 3.1. Unsmoothed Nonrandom RT Data for Y = Cool: Subject 1
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RT

O = NWMUIIOJ DO

1 5 913172125293337414549535761656973778185899397
Phrase Number

Figure 3.2. Unsmoothed random RT Data: Subject 1

A linear regression model was constructed for the experiment's RT data.
Predicted RT served as the dependent variable. Of the five independent
variables four were indicator variables related to the agree/disagree
responses and the fifth was a decreasing function intended to model the
observed RT learning effect. The inflection point is defined as the
imaginary value of X between a change in a subject's agree/disagree
response for a given Y.

PRT = a + bly + bolp + bglg + bglg + cL (1)
PRT: predicted response time
a: y intercept
by-bg4: indicator variable coefficients
p: imaginary inflection point phrase
I4: indicator variable at inflection point p-2
P¥ indicator variable at inflection point p-1
I3: indicator variable at inflection point p+1
Ig: indicator variable at inflection point p+2
c: learning effect variable's coefficient
L: learning effect compensation variable, defined

as In(k+m) where K > 0 and m is the phrase number.

R-squared values were highest for the nonrandomized runs when a model
was constructed for each group of 33 responses for a given Y rather than
the 99 responses encompassing all three Y values. In addition to a need for
mouse coordination learning for a given run there appeared to be a need for
context learning as the subject considered what a coo! day felt like. Lack
of context learning in the randomized environment may explain the need for
reinitialization of the learning variable for each new Y for the
nonrandomized runs and why the learning variable coefficient ¢ was
significant with a 97.5% confidence limit for only two subjects. Figures
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3.3 and 3, 4 list the variables which were significant with a 97.5%
confidence limit for the nonrandomized runs and for the randomized runs.

Subjsct Y = Cool Y = Warm Y = Hot

S1 I3,L 0.87 12,13,L 0.54 I13,L 0.88
S2 12,13,L 0.68 12,13,L 0.80 13 0.48
S3 13,1 0.83 13,L 0.58 L 0.35
S4 1,12,14,L 0.70 i3,L 043 I3,L 0.63
S5 13,L 0.58 1,I13,L 0.48 12,L 0.40
S6 13,L 0.70 I3,L 0.67 13,L 0.40
S7 12,13,L 0.77 12,I13,L 0.47 11-13,L 0.58
S8 L 0.31 11-13,L 0.56 11-13,L 0.77
S9 11,13,L 0.64 L 0.31 NA NA
S10 13,L 0.53 none 0.05 I13,L 0.55
S11 NA NA 12,L 0.35 none 0.05
S12 L 0.44 12 0.16 12,1 0.55
S$13 L 0.58 11,12 0.50 i2,L 0.28
S14 13,1 0.85 i3,L 0.89 12,13 0.61

NOTE: Coefficients significant with a 97.5% confidence limit.

Figure 3.3. Significant Coefficients and R-squared values for nonrandomized runs.

Subject ~  VYarable = B-squared

S1 12,13 0.18
S2 11,12 0.11
S3 L 0.20
S4 13,14 0.08
S5 12,13 0.11
S6 14 0.10
S7 none NA

S8 none NA

S9 1,12 0.12
S10 11,13,14 0.26
St1 14 0.05
S12 12 0.05
S13 11,12 0.11
S14 11,12,L 0.26

NOTE: Coefficients significant with a
97.5% confidence limit.

Figure 3.4. Significant Coefficients and
R-squared values for randomized runs.

The results of the experiment are consistent with the prior findings of
categorization and concept formation experiments. RTs were greater for
marginal members and marginal nonmembers of a category than for clear
members and clear nonmembers. Although the RT data is too noisy for
constructing membership functions, the data appears well suited for
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identifying the general location of a fuzzy set's vague region.

The greater RT for poor members and poor nonmembers of a category in
concept formation and categorization experiments should translate into RT
peaks in a membership function's vague region, or where 0 < py(x) < 1. In

this way RT methodology can be used to validate the general shape of a
given membership function. We turn now to examine this claim by
comparing the experiment's RT data with several experimentally
determined membership functions obtained from subject agree/disagree
responses.

Zadeh (1968) extended the relation between an event Y's probability (P)
and the expected value (E) of its membership function py. Specifically:

Py(X) = E(uy(X)). (2)

Hersh and Caramazza (1976) used equation (2) to construct membership
functions for size descriptors of black squares projected on a white
background. The binary responses of Hersh and Caramazza's subjects were
averaged to generate membership functions for the available square size
descriptors.

Normalized membership functions for the temperature descriptors were
generated using equation (2) and the agree/disagree data from the RT
experiment. Thus:

ny(x) = Normalized ((X AD;)/n) for i=1 to i=n (3)

where AD; is the agree/disagree response for subject i and AD; = 1 if the
subject agrees and AD; = 0 if the subject disagrees and n is the number of

subjects. ,
In order to compare RT peaks with membership function values the RT
data was normalized by subject and averaged. Normalization of the RT
data by subject prevented data from subjects with high mean RTs from
obscuring the RT data relationships from subjects with low mean RTs. The

aggregated RT (ART) for a given X in Y was calculated as:

ARTy(x) = X normalized RT; for all i (4)

The data from subjects exhibiting entailment of warm and hot
agree/disagree responses were eliminated from the ART and u calculations
for Y = warm for the nonrandom data and for Y = cool, warm and hot for the
random data. As with the individual subject data, the ART data contained a
learning trend component. This learning trend component was estimated by
regressing ART with one of three decreasing functions listed in Figure 3.5.

To depict the relationship between ART and p the predicted ART (PART)
was subtracted from the ART to provide the ART residuals (R) for a given Y
for the nonrandom data or for all Ys for the random data:

PART(X) = & + b*Lj(x) (5)
R(x) = ART(x) - PART() (6)
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i | ing Function |
1 1/in (k+m)
2 exp(-km)
3 ((N-1)/(1-N))m+(N+1)

k : experimentally determined
m : phrase humber in data group
N : number of phrases in this data group

Figure 3.5. PART Learning Functions.

As expected positive values of the residual occurred most commonly in a
fuzzy set's vague region. An intuitive feeling for the distribution of
positive values of R as a function of uy can be obtained from figures 3.6

and 3.7. The thick black horizontal line marks the point below which R < 0
and above which R > 0.
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Figure 3.6. The residual R vs py for all Ys for nonrandomized data.
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Figure 3.7. The residual R vs py for all Ys for randomized data.

Summary

There are differences in the membership functions obtained from
nonrandomized and randomized phrases. Although these differences relate
to the value of nuy for a given X and not to the general behavior of RT data,

they do raise a question. Should one use randomized or nonrandomized
supports when considering the performance of a membership function
generation technique ? Without additional experimentation this is not a
straight forward question to answer. Although biases can result from the
use of nonrandomized data, individuals in real life situations undoubtedly
form categories from nonrandomized data. For example, real world
ordering of purchase alternatives on price can produce categorization
based on nonrandomized data.

Although RT methodology appears overly time consuming for daily
verification of membership functions, it has great value in examining the
general validity of a particular membership function generation technique.
Membership function generation techniques significantly at odds with the
cognitive psychology underlying the categorization process raise serious
questions about their validity. RT measurement's theoretical foundation in
cognitive psychology can be seen as providing a valuable tool for verifying
the overall shape of membership functions.
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