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For fuzzy quantum spaces we define the basic notions
of ergodic theoxry and we generalize the Birkhoff individual
ergodic theorem, maximal ergodic theorem and the Poinocard
recurrence theorems,

There exists (Riedan, B, [1]) an axiomatic model of
quantum mechanics whioch is based on the ideas of the fuzzy
set theory:

DEFINITION 1, A fussy quantus spece is a couple (X,M),

where X is a nonempty set and McC [0,1]" such that the fo=
llowing conditions are satisfied:

(13 1f [ (x) = 1 for any x6 X, then L1l ey

(11) if a€ M, then a'i= 1 - ag Mj
(114) ar f1/2]4(x) = 1/2 for any x€ X; then [1/2] ¢

00
(av) nl.i1an:= sup a, € M, for any {a} ® cn

By (lo,n we mean inf L

The system M is called in the fuzzy sets theory a soft 6=
~algebra (Piasecki, K, [2]).

DEFINITION 2, An F=state of a fuzay quantum space (X;M)
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is a mepping m: M—»[0,1] such that
(1) m(aU(1 =« a)) = 1 for every a€ M;
(11) 1r a,eM (1 =1, 2; ,o0) and a; &1« a, (1 #3) then
a(Va,) = Z;-(a,.).

In the fussy set theory the mapping m is called a Pemeasure
and M is a soft Gsalgebra (Piaseocki) K, [2)).

DEFINITION 4, w on a fussy quantum space

(X;M) is a mapping x: B(R' )—>M satisfying the following
propexrties;

(1) x(2°) = 1 = x(E) for every E ¢ B(R! )3
(11) 2r fEn}“’ ¢ B(R'), then x(D E) = 6 x(E_)3
n=1 ’ n=1 n=1 n
where B(R') 1s the Borel Gealgebra of the real line R', and
E° denotes the cemplement of the set E in R',

Foxr example, if a is a fuzzy set from M, then the mappe
mx‘wmdm

anat 1r 0,1¢E
ot if O€E, 1B
% (E) =3y, Af OE¢E, 16E (1)

avat i1f 0,1€E

for any EEB(R') 1s an Fwobservable of (X;M) ecalled the
indigater of the fuaszy set a,

Especialy, the nmll Poebservable of (X;M) is a mapping
o: B(R')—»MX suoh that

ol if 04 E
‘(n) = [11x if OC E, (E QB(R )) (2)

1r £: R'—R! 1 & Borel measurable funotion, then fox:
E—x(f"1(2)); 2€B(R') 1s an Peobservable of (x;M)s For
example, if £(t) = tz, ten’&, then by :l:2 we mean f.x, eoto,

Since (DvureBenskij, A., Tirpékovi, A. [3]) there is
an one~towone correspodence between an Feobservable x and
the system {Bx(t)z = x((wa0,t)): tCR‘}, in the papers [3,4];
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the sum of any pair x and y of Feobservables of (X;M) has
been intreoduced:

DEFINITION 3, By the suym of any pair of twh Feobser-
vables x and Yy we mean a unique Feobservable x + y for
which we have

B, (t) = U | (B )NB (¢ - £)); tc Rl (3)

In (nmnamuj, A., Tirpékové, A.f[3,4]1); there has been
proved that x+y exists alwaysi and it ocoincides with poite
wisely defined sum of observables for C~algebra of orisp
subsets, Moxeover, (1) x + y =y + x5 (14) (x + y) + z =
=x 4+ (Y + 2)e The difference of x and y is defined as
Xey=x+ (wy), vhere (=y)(E) = y({t: ~t € E}), BE€ B(R Yo
If x is an Feobservable and m is an F=state, themn the
2000 YaARe ©of x in m we shall understamd the expression

m(x) =,,n/1 t &x(t)" 1= /l dm, (%)
if the imtegral exists and is finite, where m_ is a pro-

h.uuty measure on B(R') defined via m (E) = n(x(E)),
E€ n(n Yo

DEFINITION 4, We say, that a sequence (xn] ;:1 of Fuobe

servables of a fussy quantum space (X M) cemverges to an
Feobservable x almest everywhere in an Festate m (in short
xn-—-x ‘... r-])’ if for overy £->0‘,

-(U n ((x e x)([«&E])) = 1,
A mapping U: M—» M such that
1) Ta?) = T(a3", aemy
o0 o0
(14) CY a) = U Tlay)s (a3 cn

is called a hememerphism of (XyM)s We say, that a homomore
phism h of (X,M) is ipvegfeiit in an Festate if

u(T(a)) = m(a), ae M,
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A homemorphosm h of (X;N) invariant in an Festate m is said
to be epgedic in m if the statement m(a AT(@*)) =0 =

= m(T(a)A a*) implies m(a) € (0,1}, If T is a homomorphism
and x 1s an P-observable, then Tox: E— (x(E)); E€B(R');
is an Feobservable of (X,M).

ERGODIC THEOREMS

The ocaloulus for observables that has been ocutlined in
(PvureSenskij, A., Tirpékové, A, [4]) enables us to formme
late and prove the main ergedic theorems,

x be an Feobservable or (X,Il) and :I.ot The a ho-o-orphim
of (X;M) ergodic in an Fe=state m, Suppose m(x) = O, Then
ne1
% L L x— o ace.M]. (5)
PROOF, Lot us define I = {acM: m(a) = 0}; then a re.
latien "~/ " defined via uNb 1¢¢ m(aAd®) = 0 = m(a*A b) 1s
the comgruence, and moreover, u/:r‘ {u = {beu; bn.m]xaéu}
is the Boolean Sa=algebra (in the sense of Sikorski [5]), _
where the complementation * “* in M/I_ is defined via Z'= a)
a€M and \:{ﬂi = y‘i’ {a,},c ¥, The mapping hi M—DH/I_ dee~

fined via h(a) = &, a€¢ M is a homomorphism from M omto H/I..
The mapping p1 M/I—>[0,1] for which A(R) = m(a); ad¢ M,
is a probadility measure on M/In.'

Define a mapping T: M/I-—»M/I_ as follows

f(‘a') = Ca, aéM, (6)
Then due to the invariancy of ¥ in m, § is a wellwdefined
homomorphism of M/Im,_ that is,
(1) €@) =8;
(11) t(w) (T(R))*, acwy
(111) B(V &) = 212(:,), {a c M,

Moreover, § is invariant in &, 1.0., A(T(2)) = A(R), a€ M,



90

Let x be an Fewobsexrvable of (X,M)., Then y:= h.x is an
observable of H/I-. We recall that it means that

(1) y(9) = B
(11) y(x°) = y()? BeB(R");

oo 00 1
(111) y(U B,) = V ¥(8,), {B}C B(R"),
i=1 i=1
In the following we need the next lemma,
LEoA 1, If T is invariant in m, then for any n = 0,

1’ eoe g VO have
(1) tnoy = h.‘Cn.x. (7)
(11) Let A be the minimal Boolean subeG ~algebra of ll/I-
containing all ranges ott‘%r’,n: 1y 25 eee o Then
T2 €A for any &€ A. .
PROOF, (1) It 1s evident, (ii) Denote by A, ={@ ca:
Taica}. ™en B,T€a, and A, 1s a Boolean sub= & -algebra
of II/I- containing all ranges of T ': Y, n> 0, Hence Ao = Ao
Q.E.D.
Cantimmstion of the proef e 5091 1s It 1s evident
that the Boolean sub=0C salgebra A in Lemma 1 has a countabe
le generater. Due to (Varadarajan, V. S, [ 6]’. Theorem 1.4),
there is an observable =: B(R1 )—-bl(/I‘ such that
{z(e): ecB®))} = a,
and, moreover, there is a sequence of reale~valued Borel
]
functions {rﬂ} neq Such that
(X" y)(®) = 5(£7'(E)); E€B(R'), n = 0, 1; cuouy (8)
and fn is essentially unique in the semse that if

2(£21(2)) = 2" (5)), E€B(R), them a({ts £, (¢) # g (t)})
=3,

From the construction of z it follows that € is z-meae
surable, that is; E(s(B(R')))<z(B(R!')). Due to (DvureSens-

kij, Ae, RieSan, B. [7]), it is pessible iff there is a Boe

‘81 measurable transformation 7T: R‘—->R1 such that
€(=(8)) = 3(17' (), EeB(r'), (9)
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Therefore,

T ™(s(x)) = z(1™(®)); EcB(R'), (10)
and -

TRy =T REE" (@) = s (e (B))) =

2((£0. 7)1 () = 2(£7 (B)).
Due to (Varadasajam, V, S, [6], Theorem 1.,4), we may assu~
me witheut loss of gemerality that f = foT, B =0, 1, cee)
for some Borel functiem f,

For observables in H/In there is a welleknown (Varadarae
Jan, V. S. [6]) way of definition of their sum, and the cone

vergence almost everywhere of observables in l(/I‘ is same
as for Feobservables, Therefore,

;1; Ettno x— ¢ [m] iff % %1 Thyoo a.n.fgl.};
i=1 i=1

where ¥(E) = 8 if O¢ E and ¢/(E) = T otherwise,
The latest comvergence is true irf

1 s 1
= ?f‘(‘!"),z—»d’ a.e, [j]', which is possible iff

1 Dw 1 |
2 2 f(T(2)) 0 aceli], vhewe K(E) = Als(E)),

EE€ B(n1 )s is a probability measure on B(R1 e
On the other hand,

m(x) ={; t d-x(t) = n'/1 t dﬂi(t) -.-{; £(t) d/g(t) = 0,
vhere /4 (E) = /(y(E)), BeB(R').

Take imto mccount a dynamic system (R', B(R'); 45 T). Then
T is (~imvariant and ergodic in M, i, e.,(1) m (7' (E)) =

M (E), EcB(R')g (11) 7' (B) = B implies K (E) € (051},

Therefore, due to (Halmes, P, R, [8]), for £ the individual
ergodic theorem holds, comnsequently (5) is proved,
QOEO n.

REMARK, The individual exrgodic theorem for fuzzy quantum
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spaces has been proved 2n (Harman, n., noesan. ‘Be [9]) But
only under the restriotiom T(x(B(R' ))) 4x(B(r')). Theorem 1
presents the most general case,

The product of two observables x and y is defined as foe
llows

XY = ((x + ¥)? = x% = y3)/2, (11)

Hence, if a is a fuszy set frem M, then an indefinite iptege
gl of x is the expression

{x dm; =/::.::a dm, (12)

mphluefqtuszymm (x;;u) invariant in an Fe
state m, Let x be an Peobservable of (X;M) which has a finite

Sk = Z ‘t‘,x, k = 1,.003 n, a = 16151((03,00))0 Then

a .

PROOF, Let h be a mapping from the proof of Theorem 1.
Then ho(x + y) = hox + hoy; h(fox) = foh(x); ho(x.y) =
hox.hoy, Therefore, if X= is a question observable of lVI
that is, x.({o}) = a%, x=({1}) = &, then we have (see tho
proof of Thooro- 1) 8 = h(a) = v h(si((ogeo))) 213(5 (
(0,00))) = z(u -‘((or,eom = 2(max(0, 8,5 cees )>0),

where Kol
o (t) = ?f(ri(t)), ter',

Hence,
fx dm = fx.x dm = /h.x.hox du = /h.(x.x-) ap =
..fh.x ap = ff(t) d“b(t), vhere A = {t en : max{0, s 8300

seey S )>0} Applying maximal ergodic theorem for the dy=
namic system (R , B(R Yo Ty &y )s We see that ft(t) %(t)) 0.

Q.E.D.



93

Finally we prove the Poincaré recurrence theorems, Ve
recall that for any two fuzzy sets a,bEM we define a « b =
= anb', The fuzzy sets a,beM are orthogonal, and we write
alb, if afb

THEOREM 3. (Recurrence theorem), Let T be a homomore
phism of a fussy quantum space (X,M) and let T be invariant
in an Fastate, Then for all a€ M we have

u(a - b Wa) =

J
PROOF, Let b = U Ca, then (T} 5 s are orthoco-
j:
nal elements of M therefore -(@;[Jb) 1-(‘0’!:) -(b)‘(
J= J= J=1
< 1, Hoence m(db) =
Q.E.D,
® ™
ror{aécnwodotimmaupuas v

n=1 j=n J

THEOREM 4. (Stromg recurremce theerem), Let (X,M) de a
fuzzy quantum space and C be a homomorphism invariant in
an Fastate m, Then for all a €M we have

m(a « lim sup ‘Cda) = O,

PROOF, Lot b = & « lim sup Tla, then b = a/\u (U )=
n=1 j=n

U @A (Uda)) = U (a - u<c~‘-) U b_ vhere

n=1 J=n n=1 n=1
ba=a-°0¢c’.,n= 19 25 eee ¢ Applying Theorem 3 to a

J=n
map T= T we get for b: = Q- U T"c, -(b:) = O, But
J=1

b & b:, therefore, m(b ) = 0, » = 1, 2, .. and m(b) =

= lim -(bn) = O,
n

Q.E.D.
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