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ABSTRACT. Probability measures on quantum logics yield the possibility
of translating quantum logic notions into the language of fuzzy set
theory. The analogies between set-theoretic operations and Giles bold
union and intersection are used to give further justification of the
Maczyrski Orthogonality Postulate or the fifth axiom of Mackey.

The idea of a fuzzy set, invented by L.A. Zadeh [1] 23 years ago,
is based on the notion of a membership function, the values of which
belong to the unit interval [0,1]. However, functions, the values of
which belong to the unit interval, are often met in pure and applied
mathematics. Therefore it can be expected that in some such cases tra-
ditional mathematical notions can be expressed in the language of fuzzy
set theory. In particular such hope can be cherished when we deal with
probability measures or probability distributions. In this paper we shall
show that this kind of approach is successful in the case of probability
measures on quantum logics.

Def.1. By a quantum logic (or simply a logic) throughout this paper we

mean partially ordered, orthocomplemented, &-orthocomplete orthomodular

set, i.e. a partially ordered set L in which

(i)  the least element @ and the greatest element I exist,

(ii) the orthocomplementation map ~ : L - L, such that a "= a, ava’= I
and agsb >b'ga is admitted,

(iii) the least upper bound \/iai of any sequence of elements 21,85, ..
such that aigaj' for i#j exists, and '

(iv) the orthomodular identity agb b = av(a A b) holds.

Def.2. By a probability measure on a logic L we mean a magp m : L - [0,1]
such that m(I)=1 and m(\/iai) = E:im(ai) for any sequence of elements
such that a,ga. for i#j. A set S of probability measures on L is called

i
full iff m(a)gm(b) for all meS implies a<b.

Elements of a logic, usually called propositions, and probability
measures on a logic, usually called states form "dual" pairs such that
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to each pair (a,m)e L xS a real number m(a) € [0,1] is attached. This num-
ber is usually interpreted as the probability of obtaining a positive
result in an experiment testing proposition a when a physical system is
in the state represented by m. Despite the fact that the role of propo-
sitions and states in these pairs is symmetric, states are traditionally
viewed as functions defined on propositions. However, the opposite point
of view is also sometimes expressed [2,3] and it is in fact the basis of

the approach developed by M.J. Maczyriski [4,5], who proved the following
theorem :

Theorem 1. (Maczyriski [5], proof in [4] )

(i) If L is a logic with a full set of probability measures S, then each
ael induces a function a : S - [0,1] where a(m) = m(a) for all me¢S. The
set of all such functions L = {_al : a eL}satisfies the following condition

(OP) if a;,a,,... is a sequence of functions such that _qi+_a_jg1 for i#3,

then there exists b el such that g+§_1+§_ +...= 1.

L equipped with the natural partial order : agb iff a(m)g< b(m) for all
meS and complementation a = 1-a is isomorphic to L.

(ii) Conversely, if L;Q[O,l]x is a set of functions in which the condi-
tion (OP) is satisfied, then it is a logic with respect to natural par-
tial order < and complementation. Every point x € X induces a proba-
bility measure m on L where mx(g) = a(x) for all a el and the set of
all such measures {mx : x €X} is full.

The condition (OP) is called by Maczyriski the Orthogonality Postu-
late and it is essential in the part (ii) of Theorem 1. In fact it re-
places the fifth axiom from the well-known axiomatic approach of Mackey
[6] and it is sufficient for the conditions (i),(iii) and (iv) of Defini-
tion 1 to be fulfilled.

Theorem 1 allows us to express quantum logic notions in the language
of fuzzy set theory. Actually, since functions a : S - [0,1] described
in part (i) of Theorem 1 can be interpreted as membership functions of
fuzzy subsets of the set of probability measures S, we see that elements
of the logic L are in one-to-one correspondence with fuzzy subsets of S.
Moreover, natural partial order and complementation_g'= 1-a in the set of
membership functions are nothing else than standard fuzzy set inclusion
and complementation as defined already by Zadeh [1]. Two fuzzy sets A,B
which membership functions,MA and‘Nb satisfy the condition
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sup(0, My+ Mg-1) = 0 (or, equivalently, Mpt Mg < 1) (1)

are called weakly disjoint sets and denoted A | B by Giles [7] (or W-sep-
arated sets by Piasecki [8] ). If the sum of membership functions of a
sequence of fuzzy sets is not greater than 1, it coincides with the mem-

bership function of a fuzzy set obtained by the operation called bold
union by Giles [7]

Mg () = inf(L, My () + Mg () ). (2)

Therefore, Theorem 1 can be translated into the fuzzy set language in the
following way (cf. [9]).

Theorem 1°. (i) Any logic L with a full set of probability measures S is
isomorphic to a family L of fuzzy subsets of S equipped with the stand-
ard fuzzy set inclusion and complementation and satlsfylng the following
Fuzzy Orthogonality Postulate :

(FOP) if Al’AZ"" is a sequence of pairwise weakly disjoint sets, then
Z"‘A <l and the fuzzy complement of the bold union U;A; exists in L.
ivi

(ii) Cdnversly, any family [ of fuzzy subsets of an universum X in which
FOP is satisfied is a logic with respect to standard fuzzy set inclusion
and complementation. Each point x of the universum X induces a probabili-
ty measure m, on L where mx(A) = /“'A(x) for all Ae [ and the set of all
such measures is full.

If ael and meS, then the number a(m) can be interpreted in the
language of fuzzy set theory as the grade of membership of a state m to a
fuzzy subset A of the universum S determined by the property : "the out-
come of an experiment testing the proposition a is positive" [9].

Let us now restrict ourselves to set P of pure probability measures
on a logic L i.e. such measures which cannot be represented in the form
of convex combinations of other measures and, therefore, represent pure
states of a physical system. It is a well-known fact that pure states of
classical systems are dispersion-free, i.e. the probability m(a) of ob-
taining a positive result in an experiment testing a when a system is in
a pure state m is either 0 or 1. Consequently, any logic of a classical
system regarded as a family of subsets of an universum P consists exclu-
sively of crisp subsets of P while in the case of logics of quantum
systems utilization of genuine fuzzy subsets of P cannot be avoided [9].

The other feature which distinguishes classical mechanics from guan-
tum mechanics is that logics of classical systems regarded as partial-
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ly ordered orthocomplemented sets are 6 -complete Boolean algebras. When
regarded as families of subsets of P they are simply Boolean algebras of
crisp subsets of P with respect to standard set-theoretic inclusion and
complementation. In the case of logics of quantum systems the Boolean
type of logics cannot be expected. However, formal similarities between
properties of set-theoretic complement, union and intersection and prop-
erties of Zadeh s standard fuzzy set complement and Giles bold union
(2) and intersection

}lAnB(x) = sup(O,)AA(x) + MB(X) -1 (3)

can be used to justify in another way the Maczyriski Orthogonality Postu-
late or the fifth axiom of Mackey.

First of all let us notice that despite the fact that any & -com-
plete Boolean algebra of crisp sets is closed under countable unions of
sequences of arbitrary sets, in the definition of a (probability) meas-
ure on a Boolean algebra of crisp sets only sequences of disjoint sets
are taken into account. Weak disjointness of fuzzy sets was originally
defined by Giles [7] by the following formula

AlB iff AMB=¢ (4
which is formally identical with the definition of disjoint crisp sets :
ANB =4. (5)

Thus, the closedness of 6 -complete Boolean algebra of crisp subsets of P
under the set-theoretic union and complementation of disjoint crisp sets

immediately gives the Fuzzy Orthogonality Postulate when we pass to fuzzy
subsets of P. To achieve this we replace crisp subsets by fuzzy subsets,

set-theoretic complementation by standard fuzzy set complementation and

set-theoretic union and intersection of disjoint crisp sets by Giles’
bold union and intersection of fuzzy sets.

It is noteworthy that standard fuzzy set union and intersection
would not do the job since their properties imply that the standard fuzzy
set complementation cannot be an orthocomplementation in the family of
fuzzy sets partially ordered by the fuzzy set inclusion [10].

Finally, let us mention that the attempt at justifying FOP with the
aid of the "quantization" mapping "q" from Boolean algebra of crisp sub-
sets of P onto the family of fuzzy subsets of P proposed in [9] does not
seem to be satisfactory. Besides the fact that assumptions about "q"
adopted in [9] are too strong and force "q" to be an isomorphism (which
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it obviously should not be), according to our present opinion the direc-
tion of the desired mapping should be the opposite. Indeed, as has been
pointed out, for example by Schiff [11], the passage from classical to
guantum mechanics can be made in many different ways by adding to the
classical equation of motion different terms which vanish when Planck s
constant "h" diverges to 0. Therefore, the "guantization" mapping cannot
be expected to be uniquely defined. On the contrary, the passage from
quantum mechanics to classical mechanics, i.e. the "classical limit" is
a unique operation and this (of course purely theoretical) operation can
be applied even in the case of a single physical system with a well de-
fined set of pure states P. The possibility of using this operation to
study connections between the classical and quantum logics of physical
systems will be studied in a forthcoming paper.
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