On the Null-additivity and the Autocontinuity of Fuzzy Measure

Wang Zhenyuan

Department of Mathematics

Hebei University

Baoding, Hebei, China

(Extended abstract)

Since Sugeno [1] introduced the concept of fuzzy measure, the structural characteristics of fuzzy measure have been studied in a lot of papers, such as [2], [3], [4] and [5]. These characteristics play important roles in the theory of fuzzy measure and fuzzy integral. In this paper, a further research on the null-additivity and the autocontinuity of fuzzy measure will be made.

1. Definitions

Let X be a nonempty set, \mathcal{F} be a σ -algebra of subsets of X, and $\mu:\mathcal{F}\longrightarrow [0,\infty]$ be a nonnegative extended real-valued set function.

Definition 1. μ is called to be null-additive, if μ(EUF) = μ(E) whenever E ∈ F, F ∈ F, E ∩ F = φ and μ(E) = 0.

Definition 2. µ is called to be autocontinuous from above (resp. from below), if

$$\mu(A \cup B_n) \longrightarrow \mu(A)$$

 $(resp. \mu(A - B_n) \longrightarrow \mu(A))$

whenever $A \in \mathcal{F}$, $B_n \in \mathcal{F}$, $A \cap B_n = \phi$ (resp. $B_n \subset A$), $n=1,2,\cdots$, $\mu(B_n) \longrightarrow 0$; μ is called to be autocontinuous, if it is both autocontinuous from above and from below.

Definition 3. μ is called to be uniformly autocontinuous from above (resp. from below), if $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$, such that

$$\mu(A) - \mathcal{E} \le \mu(A \cup B) \le \mu(A) + \mathcal{E}$$

 $(\text{resp. } \mu(A) - \mathcal{E} \le \mu(A - B) \le \mu(A) + \mathcal{E})$

whenever $A \in \mathcal{F}$, $B \in \mathcal{F}$, $A \cap B = \phi$ (resp. $B \subset A$), $\mu(B) \leq \delta$; μ is called to be uniformly autocontinuous, if it is both uniformly autocontinuous from above and from below.

Definition 4. μ is a fuzzy measure, if

- (1) $\mu(\phi) = 0$;
- (2) $A \subseteq B \implies \mu(A) \leq \mu(B)$;
- $(3) \{A_n\} \subset \mathcal{F}, A_1 \subset A_2 \subset \cdots \implies \mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n);$
- (4) $\{A_n\}\subset \mathcal{F}, A_1\supset A_2\supset \cdots$, and $\exists n_0$, such that $\mu(A_{n_0})<\infty \implies \mu(n_0^m, A_n)=\lim_{n\to\infty}\mu(A_n)$.

2. Principal results

We know that the uniform autocontinuity from above (resp. from below) implies the autocontinuity from above(resp. from below), and the latter implies the null-additivity. When μ is a fuzzy measure, the uniform autocontinuity from above is equivalent to the uniform autocontinuity from below.

In the following, we always suppose μ is a fuzzy measure on the measurable space (X,\mathcal{F}) .

Theorem 1. If μ is autocontinuous from above, then it is autocontinuous from below. When $\mu(X)<\infty$, the autocontinuity from below implies the autocontinuity from above, and therefore, the autocontinuity, the autocontinuity from above and the autocontinuity from below are equivalent.

There is an example (cf. [4]) to show that the autocontinuity from below does not imply the autocontinuity from above when $\mu(X)$

= ∞ . This example shows that as well, in general, the null-additivity is not equivalent to the autocontinuity. However, we have the following result.

Theorem 2. If X is countable and $\mu(X) < \infty$, then the null-additivity is equivalent to the autocontinuity.

The following example shows that an autocontinuous fuzzy measure may be not uniformly autocontinuous.

Example. Let $X = \{1, 2, \dots\}, \mathcal{F}$ be the power set of X, $\mu(E) = \exp\{\sum_{i \in E} \frac{1}{i}\} - 1$, $\forall E \in \mathcal{F}$. μ is autocontinuous, and it is a quasi-measure (cf. [3]), but it is not uniformly autocontinuous.

There is an example showing that the autocontinuity is not equivalent to the uniform autocontinuity, even if μ is finite.

Theorem 3. Quasi-measure is autocontinuous, and finite quasi-measure is uniform autocontinuous.

The following results are useful to constructing some examples of fuzzy measure possessing the null-additivity, the autocontinuity or the uniform autocontinuity respectively.

Let μ_1 , μ_2 be fuzzy measures. If we set $\mu(E) = \mu_1(E) + \mu_2(E)$, $\nu(E) = \mu_1(E) \cdot \mu_2(E)$, $\forall E \in \mathcal{F}$, then μ and ν are fuzzy measures as well. Theorem 4. If both μ_1 and μ_2 are null-additive (resp. autocontinuous or uniformly autocontinuous), then so is μ .

Theorem 5. If both μ_1 and μ_2 are null-additive (resp. autocontinuous), then so is ν .

There are some examples showing that when $\nu(X) = \infty$, ν may be not uniformly autocontinuous, even if both μ_1 and μ_2 are uniformly autocontinuous.

However, we have

Theorem 6. If both μ_1 and μ_2 are finite and uniformly autocontinuous, then so is ν .

3. Open problems

- (1) Giving up the restriction that X is countable, does the conclusion of Theorem 2 remain true?
- (2) We have proved such a proposition: Let $\{E_n\}\subset\mathcal{F}$, $\mu(E_n)\longrightarrow 0$, if μ is autocontinuous from above (resp. from below, and $\mu(X)<\infty$), then there exists some subsequence $\{E_n\}$ of $\{E_n\}$, such that

$$\mu(j_{1}^{m}, i_{2}^{m}) = 0$$

$$(resp. \mu(j_{1}^{m}, i_{2}^{m}) = 0$$

But we don't know whether the condition $\mu(X) < \infty$ may be abandoned.

References

- [1] M. Sugeno, Theory of fuzzy integrals and its applications, Thesis, Tokyo Institute of Technology (1974).
- [2] Sun Qinghe and Wang Zhenyuan, On the autocontinuity of fuzzy measures, in: R. Trappl, Ed., Cybernetics and Systems'88 (Kluwer Academic Publishers, Holland, 1988) 717-721.
- [3] Wang Zhenyuan, Une classe de mesures floues—les quasi-mesures, BUSEFAL 6(1981) 28-37.
- [4] Wang Zhenyuan, The autocontinuity of set function and the fuzzy integral, J. Math. Anal. Appl. 99(1984) 195-218.
- [5] Wang Zhenyuan, Asymptotic structural characteristics of fuzzy measure and their applications, Fuzzy Sets and Systems 16 (1985) 277-290.