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Abstract

In this paper we consider the real-valued fuzzy measures and
fuzzy integrals for L-fuzzy sets (where L is a pseudocomplemented
infinitely distributive complete lattice), this is only a summary
of our work, On a fuzzy oc-algebra of L-fuzzy sets, the concepts
of the fuzzy measure and the fuzzy integral are introduced, some
equivalent forms of fuzzy integrals on L-fuzzy sets are given.,
Moreover we discuss several properties of fuzzy integrals on L-
fuzzy sets, and prove some convergence theorems for a sequence of
fuzzy integrals on L~fuzzy sets.,
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1. Introduction

The fuzzy measures and fuzzy integrals for Zadeh's fuzzy sets
were studied by Qiao and Wang(5,6,7,12) (where a fuzzy set is a
mapping from a nonempty set X to the interval (o0,1) ). In this
paper we shall establish a theory of the fuzzy measure and fuzzy
integral on a fuzzy o-algebra of L-fuzzy sets (where a L-fuzzy
set is a mapping from X to the pseudocomplemented infinitely dis-
tributive complete lattice L).

Throughout this paper, L denote a pseudocomplemeted infinitely
distributive complete lattice, namely the lattice L satisfies the
following conditions:

(1) For any HcL, A h and vV h are existent in L;
h€H heH

(2) For any HcL, a €L, then

aA(V h)=V (aAh), aV({Ah)=A (aVh) ;
heH h€H h€H heH

(3) There exists a mapping N: L— L, such that
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N(N(a))=a for any a €L, and if a<b, then N(b)<N(a) for any
a,b €L. That is, N is a pseudo-complementation on L. Obviously,
N(I)=0, N(©)=I, where I and © are respectively the greatest and
least element of L.
In this paper, X denote a nonempty set, C}L(X)u{,g; A: X—L}
is the class of all L-fuzzy sets on X, (PL(X)n(E,; E: X—{1,0}},
evidently, TJL(X) c:@L(X). Thus %L(X) has a lattice structure

induced pointwise by L, namely 3L(X) is a pseudocomplemented in-
finitely distributive complete lattice, The greatest element of
%L(X) is the L-fuzzy set X : X(x)=I for any x €X. The least
element of @L(X) is the L-fuzzy set @ : §(x)=0 for any x €X.

For the class @L(X), we observe the fact:

X,8€R(X), and X°=p , @°%=X;
For any EEP (X), E°nE=p , EU E =X.

We make the following conventions:

U {-)=d n {-)=X, inf{a,; € (0,0)) =% , 0-% =0,
£€Q p Al teQ ’ <0 a5 & ’ ’

where ¢ is the classical empty set.

2. Fuzzy o~Algebra and Fuzzy Measure for L-Fuzzy Sets

Definition2.1 A nonempty subclass % of ’»}L(X) is called a fuzzy
g-algebra, if it satisfies the following conditions:
(1) 8, X€2; (2) If A€3, then A°€%; (3) If (A )3, then
o0 ~ / ~~ ~
natén €%.
Evidently, C}L(X) and @L(X) are fuzzy o-algebras. If g is

a fuzzy o-algebra, then %R =@L(x)n% is a fuzzy o-algebra.
In this paper, 4 will always denote a fuzzy c-algebra.
Definition2,2 A~mapping u: %-—-(o,oo) is said to be a fuzzy

measure on 3 , if and only if

(1) u(@)=o;

(2) For any &EE%, if AcB, then u(A)<m(B) (monotonicity);

(3) whenever (A}cd, A cA .4, n=1,2,", then

00
E(ng 1'&1):;%}.& E(An) (continuity from below);
(4) Whenever (A} <%, A DA 4, n=1,2,---, and there exists n,
[+, ] N .
such that ’g’(éno)<oo, then H_(ntl 1%)::%}’%(&1) (continuity from
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above). The triple (X,E »M) is called a fuzzy measure space.

Definition2,3 The fuzzy measure u is called autocontinuous from
above (resp. from below), if g('an)_*O’ then

u(AUB )—n(4) (resp. m(AnB,“)—nu(d) ),

whenever A € % » Byt ,% . 1 is called autocontinuous, if it
is both autocontinuous from above and from below.

Definition2.,4 Let A€ %, u(A)<« ., The fuzzy measure u is said
to be pseudo-autocontinuous from above with respect to A (resp.
from below with respect to A), if for any (B )< 3, when
g(gnn A)—u(4), we have

1((B °n 4)0 B)—nu(E) (resp. u(B,nE)—n(E) )

whenever E€ANZ . U is called pseudo-autocontinuous with res-
pect to A, if it is both pseudo-autocontinucus from above with
respect to A and from below with respect to A. (Where An% =
(AnD; De€EZ.)
Definition2.5 The fuzzy measure u is called null-subtractive,
if we have wm(ANB%)=u(4) whenever A, B€Z , u(B)=0.
Definition2,6 Let A €3, u(A) <. The fuzzy measure a1 is said
to be pseudo-null-subtractive with respect to A, if for any
E €An%, we have u(BnE)=u(E) whenever BeZ, n(Bn A)=u(4).
Proposition2,7 If the fuzzy measure u is autocontinuous from
below, then it is null-subtractive.
Proposition2,8 If the fuzzy measure u is pseudo-autocontinuous
from below with respect to A, then it is pseudo-null=-subtractive
with respect to A.

3. FPuzzy Integral on L~Fuzzy Set

Definition3.1 A mapping f: X— (-, ) is called a measurable
function on %, if Fa€$ for every ae(-; y°) , where F, is the
~ ~~ a

L-fuzzy set such that F,(x)={§ 1% §83<a for any x €X.

Denote: M=({f; f is a measurable function on %},
M'={f; f€M, £30}.
Definition3.2 Let A€%, f €M*. The fuzzy integral of f on A

with respect to u is defined by fdu= sup(e A u(AnF,)J,
~ ’é ~ GE(O OOJ ~ a
9
>

where T, is the L-fuzzy set such that F,(x)={g 1T J}f&;

a
<a x€X,



52

Remark: When L=(o0,1), Afdg is the fuzzy integral defined in
6,7,12), If we take L={0,1} , then SAfdg is the fuzzy integral
in (9,11J. ~

Theorem3.3 f fdg=_ sup(a/\~(AnF N=_ (sug[a/\,g_(énFa)J.

Theorem3 .4 jAfdua sup[a/\u(AnF )J'a sup(a/\;g_(AnF N,
~ if f(x)>a

where §, is the L-fuzzy set such that E (x) { it f(x)<a

xeX.
Theorem3,.5 S fdu= sup ( (inf £(x))A u(AnE))
A Eef E(x)=I
= sup ( (inf £(x))A u(An E),

Eez E
where B =R (X)nF.

Definition3.6 s e;g* is called a nonnegative simple function
on 4, if there exist Eq- ,E_neﬁ?) (where B @L(X)n %y i*ﬂb,

i=1,2,",n, E,N -Q i®d, s 1E =X ) and real numbers

%,...,ane[o,oo) (where ai*aj » 1#J) such that for any x €X,

s(x)sai if g:d_(x)aal, i=1,2,*",n.
Denote the set of all nonnegative simple functions on %by H.
Proposition3.,7 If s €H has two representations:
s(x)-«cz:i if gi(x)al, i=1,2,"'-,n, for any x €X,

s(x)=p, if G (x)=I, s=1,2,",m, for any x€X,

(where E » &G satisfy the condition given in Def.3.6)

s *% ?Bs
then {ags  san} ={Bs 9Byt and if y=Bg » then §i=§3 .
Theorem3.8 Let A€, f €M?, For any s €H,
s(x)nai if ,Ed(x)al, i=1,2,-*,n, for any x €X,

where E, , a; satisfy the condition given in Definition3.6, if
n
defi Q = ‘A rlAnE. the fdn= sup Q,(s
we define  Qy(s)=V, (e AR(ANE;)) , then |, ) ,(s),
where H(f)={(s; s<f, s €H}.

4, Properties of Fuzzy Integrals on l-Fuzzy Sets

Proposition4.l1 Let a,Belo,%), {a}c (0,x).

I if f(x)>¢
0 if f(x)<a ’ F, (x)=

I if f(x)>a

8 if f(x)<e xeX;

(1) F,<F, ,where Fn(X)a{
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(2) If a<p , then F;:FB , ED

(3) If a _~a and a <aq s then

(e 2]
(4) If a>~a and a,>q«, then 20 4Fs n=nE1F5n=F .

Theorem4,2 The fuzzy integrals on L-fuzzy sets have the follow-
ing properties:(where A, B€Z, f, f1,f26,rg+ )

(1) If u(A)=o, then Séfdg=o 3

(2) 1f Léfdpo, then (4 nE)=o;

(3) 1f f,<f, , then Xéf,l@gg[AfZ@ :
(4) If AcB, then Séfdg<j§fdg;

(5) For any a € (o, =), géadgua/\,g(,@;
(6) gA(fﬂ/fz)d“ > Lgﬁdk‘-\/hfzd“
(7) §A(f1 Af,)du <S f1@9/\§ foda
(8) {,  gf9e>{yfauy pta ;

(9) §Mﬁfd;a<§ faan(g 4y
(10) yA(f+a)dg<§Afd,g + SAadg, a € (0, ©);

(11) For any a €(0,=), if |f,=f,|<a, then [jAf1d£-jAf2dg|<a.

Definition4,3 fE,I‘:i,+ is called fuzzy integrable on A, if
g A.’c‘d,y.; <Loo .

Theoremi,4 f €MY is fuzzy integrable on A, if and only if
there exists a€(0, ), such that u(AnF,)<e .
Theorem4,5 Let A €73 , a€(o, o), then

-e

-e

-e

&) SAfQQ>a < VBero, @), m(AN FB)> a
Hence B(ANF)> o => fAfdg> @ ;
(2) S fdu< e s u(An Fy )< a~;Theref0re n(An Fa)<az>gréfdg<a ;
(3) § fdu=a <= VBEo, ¢), W(ANE)> o >u(AnF,) ;
Particularly, if u(A)<< , then
X’Af%xaa < u(ANE)> ¢ >p(AnE).
5. Convergence for Sequence of Measurable Functions

Definition5,1 Let {f , ficM, A€d.
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I if f (x)———f(x)
for any x €
e if £ (x)—#—'f(x) (i.e. lim f (x)¢f(x) )

(1) If A<D, then we say {(f )} converges to i‘ everywhere on A,
and denote it by f—+f on A.

Write: D( x)a{

(2) If there exists E€3 with u(E)=o, such that f£-—'-f on ANES,
then we say <fn> converges to f almost everywhere on A, and

al.e,
denote it by f: f on A,

e.
(3) If there exists E €3 with E(AHEC)BLI(A), such that f—f
on A ﬂE , then we say <f } converges to f pseudo-almost every-
where on A, and denote J.t by fp—a—'eilf on A.

Definition5,2 Let (f ,f}cM, A€Z.

I if |f (x)=f(x)|> @
Writes Tn(x)={ £ (x)-£(x)] for any x €X,
¢ & if |f (x)-£(x)< a

where a€(o,c).

(1) If for any given >0, u(4 NTY)—o0 as n—oco, then we say
(fn> converges in fuzzy measure u to f on A, denote it by fl{g»f
on A.

(2) If for any given & >0, when n—e we have u(An (Tn)c)-*g(h),
then we say (f } converges pseudo-in fuzzy measure p to f on A,
and denote it by £ 2K 1 on a.

(3) (fn> is said to F-mean converge to £ on A, if we have
Lim S £ ~£|du=o0.

Propos:l.tionS.B If £—— - a.e;

Pede€,

f on A, 1 is null-subtractive, then

fn f on A.
Proposition5.4 If fﬁ-f on X, u is autocontinuous from below,
then for any A €%, we have fp"'f on A.

Theorem5,5 F-mean convergence is equivalent to convergence in
fuzzy measure.

6. Monotone Convergence Theorems for Sequence of Fuzzy Integrals

Fn(x)={ for any x €X,
@ o if £ (x)<«
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I if f (x)>¢@
F'En(x)={ o for any x €X,
0 if fn(x)< a
where a€(o, o],
Proposition6,1 Let (f ,f)cM’, A€% .,

on
(1) If f.~_.fon A, then N _(ANFY)=AnF, ;
n ~ n=1""~ e/~ e
(2) If £ _~f on A, then U (ANFN=AOE, .

Theoremb6,2 (Monotone Convergence Theorem) Let (fn,f)cg*,
A€%, if £ ~f on A, then s,&fn%/,[,éfdg .

Theoremb,3 (Monotone Convergence Theorem) Let <fn,f)cg+,
A€%.If £~~~ f on A, and there exist n, and a constant

c<§Afd,g (o<oc), such that u(A an°)<» , then
S,éfnd'g\s,&fd“'

7. Everywhere and (pseudo-) Almost Everywhere Convergence
Theorems for Seguence of Fuzzy Integrals

Write: = inf f, = 8Q f
gn isn i ’ hn i)g ’
I if (x)> a
H?(X)a{ fn for any x €X,

6 if hn(x)< a

where a€@p, <J. '
Thearenflﬂe( Everywhere Convergence Theorem) Let (f , f) cMt,
A €% . If f;—f on A, and there exist n. and a constant

< [,fau (o<c), such that u(A NHg") <eo, then lim jéfndg

is existent, and lim j &fnd’g-s At
Theorem7,.,2 Let 1 be null-subtractive (resp. B be pseudo-null-

subtractive with respect to A, where A €% ). Then for any B €%,
we have IA nBC fau= s Afcig.l whenever u(B)=o (resp. m(AnB®)=

u( A) < oo ) .
Theorem7,.,3 (Almost Everywhere Convergence Theorem) Let A E?r-

(fn,f>c,kg s 1 be null-subtractive, If fn °f on A, and there
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exist n, and a constant c<jAfdn (0<c), such that u(A nﬁg")<oo,

then lim s f,du is existent, and Um_ j Afnd}&"] afdu.
Theorem7 .4+ (Pseudo-Almost Everywhere Convergence Theorem)

Let (f ,f yept, A €%, #(4)<>, u be pseudo-null-subtractive

with respect to A, If £ P+8:%: ¢ on A, then lim jAf du is

existent, and lim | ATqW= [, Tdu.

8. Convergence (Pseudo-) in Fuzzy Measure Theorem for Sequence

of Fuzzy Integrals

Proposition8.1 Let <fn,f>c:ﬁ+, b,c € (o0, ), then

(1) PSPl Ty 5

(2) F’é_b oF, n(fl'g)c (where b<c).

cF

Theorem8,2 (Convergence Pseudo-in Fuzzy Measure Theorem)

Let (fn,f) cg", A eg ’ )g,(A)<°° » 4 be pseudo-autocontinuous with
respect to A, If fnP;&f on A, then lm_| afnda is existent,
and ln | Afndn-s £du.

n—‘w

Theerem8,3 (Convergence in Fuzzy Measure Theorem) Let £, f)cy;
) be autocontinuous. If fﬁg~f on X, then for any A e%, we have

1 | AT f AT

N— oo

Corollary8.4 (F-Mean Convergence Theorem) Let (f_,f}cM', u be

autocontinuous, If (fn) F-mean converges to £ on X, then for

any A €%, we have Ili:i_._m.Do s Afnc;g-j A:t‘%.

Remark: If we take L=(0,1) , the conclusions given in this
paper are identical with these proved in (6,7,12),
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