FUZZY INTEGRALS ON L-FUZZY SETS AND THEIR PROPERTIES

Qiao Zhong
Department of Basic Sciences,
Hebei Institute of Architectural Engineering,
Zhangjiakou, Hebei, China

Abstract

In this paper we consider the real-valued fuzzy measures and fuzzy integrals for L-fuzzy sets (where L is a pseudocomplemented infinitely distributive complete lattice), this is only a summary of our work. On a fuzzy σ -algebra of L-fuzzy sets, the concepts of the fuzzy measure and the fuzzy integral are introduced, some equivalent forms of fuzzy integrals on L-fuzzy sets are given. Moreover we discuss several properties of fuzzy integrals on L-fuzzy sets, and prove some convergence theorems for a sequence of fuzzy integrals on L-fuzzy sets.

Keywords: Lattice, L-fuzzy set, Fuzzy measure, Fuzzy integral on L-fuzzy set.

1. Introduction

The fuzzy measures and fuzzy integrals for Zadeh's fuzzy sets were studied by Qiao and Wang (5,6,7,12) (where a fuzzy set is a mapping from a nonempty set X to the interval (0,1)). In this paper we shall establish a theory of the fuzzy measure and fuzzy integral on a fuzzy σ -algebra of L-fuzzy sets (where a L-fuzzy set is a mapping from X to the pseudocomplemented infinitely distributive complete lattice L).

Throughout this paper, L denote a pseudocomplemeted infinitely distributive complete lattice, namely the lattice L satisfies the following conditions:

- (1) For any $H \subset L$, $\bigwedge h$ and $\bigvee h$ are existent in L; $h \in H$
- (2) For any $H \subset L$, $a \in L$, then $a \wedge (\vee h) = \vee (a \wedge h)$, $a \vee (\wedge h) = \wedge (a \vee h)$; $h \in H$ $h \in H$
- (3) There exists a mapping N: $L \rightarrow L$, such that

N(N(a))=a for any $a \in L$, and if $a \le b$, then $N(b) \le N(a)$ for any $a,b \in L$. That is, N is a pseudo-complementation on L. Obviously, $N(I)=\theta$, $N(\theta)=I$, where I and θ are respectively the greatest and least element of L.

In this paper, X denote a nonempty set, $\mathcal{F}_L(X) = \{A; A: X \rightarrow L\}$ is the class of all L-fuzzy sets on X, $\mathcal{F}_L(X) = \{E; E: X \rightarrow \{I,\theta\}\}$, evidently, $\mathcal{F}_L(X) \subset \mathcal{F}_L(X)$. Thus $\mathcal{F}_L(X)$ has a lattice structure induced pointwise by L, namely $\mathcal{F}_L(X)$ is a pseudocomplemented infinitely distributive complete lattice. The greatest element of $\mathcal{F}_L(X)$ is the L-fuzzy set X: $X(x) \equiv I$ for any $x \in X$. The least element of $\mathcal{F}_L(X)$ is the L-fuzzy set \emptyset : $\emptyset(x) \equiv \emptyset$ for any $x \in X$. For the class $\mathcal{F}_L(X)$, we observe the fact:

 $X,\emptyset \in \mathcal{P}_L(X)$, and $X^C = \emptyset$, $\emptyset^C = X$; For any $E \in \mathcal{P}_L(X)$, $E^C \cap E = \emptyset$, $E^C \cup E = X$.

We make the following conventions:

2. Fuzzy σ-Algebra and Fuzzy Measure for L-Fuzzy Sets

Definition2.1 A nonempty subclass \mathfrak{F} of $\mathfrak{F}_L(X)$ is called a fuzzy σ -algebra, if it satisfies the following conditions: (1) \emptyset , $X \in \mathfrak{F}$; (2) If $A \in \mathfrak{F}$, then $A^c \in \mathfrak{F}$; (3) If $\{A_n\} \subset \mathfrak{F}$, then $A^c \in \mathfrak{F}$.

Evidently, $\Im_L(X)$ and $\Im_L(X)$ are fuzzy σ -algebras. If \Im is a fuzzy σ -algebra, then $\Im = \Im_L(X) \cap \Im$ is a fuzzy σ -algebra. In this paper, \Im will always denote a fuzzy σ -algebra. Definition2.2 A mapping $\mu: \Im \to (0,\infty)$ is said to be a fuzzy measure on \Im , if and only if

- (1) µ(Ø)=0;
- (2) For any $A, B \in \mathcal{F}$, if $A \subset B$, then u(A) < u(B) (monotonicity);
- (3) Whenever $\{A_n\} \subset \mathcal{F}$, $A_n \subset A_{n+1}$, $n=1,2,\cdots$, then $u(\sum_{n=1}^{\infty} A_n) = \lim_{n \to \infty} u(A_n)$ (continuity from below);
- (4) Whenever $\{A_n\} \subset \mathcal{L}$, $A_n \supset A_{n+1}$, $n=1,2,\cdots$, and there exists n, such that $u(A_n) < \infty$, then $u(A_n) = \lim_{n \to \infty} u(A_n)$ (continuity from

above). The triple $(X, \frac{3}{2}, \mu)$ is called a fuzzy measure space.

<u>Definition2.3</u> The fuzzy measure \underline{u} is called autocontinuous from above (resp. from below), if $\underline{u}(\underline{B}_n) \longrightarrow 0$, then

$$\underline{\underline{u}}(\underline{\underline{A}} \cup \underline{\underline{B}}_n) - \underline{\underline{u}}(\underline{\underline{A}})$$
 (resp. $\underline{\underline{u}}(\underline{\underline{A}} \cap \underline{\underline{B}}_n^c) - \underline{\underline{u}}(\underline{\underline{A}})$),

whenever $A \in \mathcal{Z}$, $\{B_n\} \subset \mathcal{Z}$. μ is called autocontinuous, if it is both autocontinuous from above and from below.

<u>Definition2.4</u> Let $\underline{A} \in \underline{\mathfrak{Z}}$, $\underline{\mathfrak{u}}(\underline{A}) < \infty$. The fuzzy measure $\underline{\mathfrak{u}}$ is said to be pseudo-autocontinuous from above with respect to \underline{A} (resp. from below with respect to \underline{A}), if for any $\{\underline{B}_n\} \subset \underline{\mathfrak{Z}}$, when $\underline{\mathfrak{u}}(\underline{B}_n \cap \underline{A}) \longrightarrow \underline{\mathfrak{u}}(\underline{A})$, we have

$$\mu((B_n^c \cap A)U E) \longrightarrow \mu(E) \quad (resp. $\mu(B_n \cap E) \longrightarrow \mu(E)$)$$

whenever $\mathbb{E} \in \mathbb{A} \cap \mathbb{Z}$. \mathbb{U} is called pseudo-autocontinuous with respect to \mathbb{A} , if it is both pseudo-autocontinuous from above with respect to \mathbb{A} and from below with respect to \mathbb{A} . (Where $\mathbb{A} \cap \mathbb{Z} = \{\mathbb{A} \cap \mathbb{D}; \ \mathbb{D} \in \mathbb{Z}\}$.)

<u>Definition2.5</u> The fuzzy measure μ is called null-subtractive, if we have $\mu(A \cap B^{C}) = \mu(A)$ whenever $A, B \in \mathcal{F}$, $\mu(B) = 0$.

Definition 2.6 Let $A \in \mathcal{F}$, $\mu(A) < \infty$. The fuzzy measure μ is said to be pseudo-null-subtractive with respect to A, if for any $E \in A \cap \mathcal{F}$, we have $\mu(B \cap E) = \mu(E)$ whenever $B \in \mathcal{F}$, $\mu(B \cap A) = \mu(A)$.

Proposition2.7 If the fuzzy measure μ is autocontinuous from below, then it is null-subtractive.

<u>Proposition2.8</u> If the fuzzy measure μ is pseudo-autocontinuous from below with respect to $\underline{\mathbb{A}}$, then it is pseudo-null-subtractive with respect to $\underline{\mathbb{A}}$.

3. Fuzzy Integral on L-Fuzzy Set

<u>Definition3.1</u> A mapping $f: X \longrightarrow (-\infty, \infty)$ is called a measurable function on \mathcal{F} , if $F_a \in \mathcal{F}$ for every $\alpha \in (-\infty, \infty)$, where F_a is the L-fuzzy set such that $F_a(x) = \{ \begin{matrix} I & \text{if} & f(x) \geqslant \alpha \\ \theta & \text{if} & f(x) < \alpha \end{matrix} \}$ for any $x \in X$.

Denote: $\underline{M} = \{f; f \text{ is a measurable function on } \underbrace{\mathfrak{Z}}, \\ \underline{M}^+ = \{f; f \in \underline{M}, f \ge 0 \}.$

<u>Definition3.2</u> Let $A \in \mathcal{F}$, $f \in M^+$. The fuzzy integral of f on A with respect to u is defined by $\int_{A} f du = \sup_{\alpha \in [0,\infty)} (\alpha \wedge u(A \cap F_{\alpha})),$

where F_{α} is the L-fuzzy set such that $F_{\alpha}(x) = \{ \begin{matrix} I & \text{if } f(x) > \alpha \\ \theta & \text{if } f(x) < \alpha \end{matrix} \} \times \{ X \in X \}$.

Remark: When L=(0,1), $\int_{A} f du$ is the fuzzy integral defined in (6,7,12). If we take L=(0,1), then $\int_{A} f du$ is the fuzzy integral in (9,11).

 $\underline{\text{Theorem3.3}} \quad \int_{\underline{A}} f d\underline{u} = \sup_{\alpha \in [0,\infty)} (\alpha \wedge \underline{u}(\underline{A} \cap F_{\alpha})) = \sup_{\alpha \in (0,\infty)} (\alpha \wedge \underline{u}(\underline{A} \cap F_{\alpha})).$

 $\begin{array}{ll} \underline{\text{Theorem3.4}} & \int_{\underline{\mathbb{A}}} f d\underline{u} = \sup_{\alpha \in (0,\infty)} (\alpha \wedge \underline{u}(\underline{\mathbb{A}} \cap F_{\overline{\alpha}})) = \sup_{\alpha \in (0,\infty)} (\alpha \wedge \underline{u}(\underline{\mathbb{A}} \cap F_{\overline{\alpha}})), \\ \text{where } F_{\overline{\alpha}} \text{ is the L-fuzzy set such that } F_{\overline{\alpha}}(x) = \begin{cases} I & \text{if } f(x) > \alpha \\ \theta & \text{if } f(x) \leqslant \alpha \end{cases} \\ x \in X. \end{aligned}$

Theorem3.5 $\int_{\mathbb{A}} f du = \sup \{ (\inf f(x)) \land \mu(A \cap E) \}$ $= \sup \{ (\inf f(x)) \land \mu(A \cap E) \},$ $E \in \mathcal{Z} \quad E(x) > 0$

where $\mathcal{B} = \mathcal{P}_{L}(X) \cap \mathcal{Z}$.

Definition 3.6 $s \in M^+$ is called a nonnegative simple function on \mathfrak{F} , if there exist $\mathbb{E}_1, \cdots, \mathbb{E}_n \in \mathfrak{F}$ (where $\mathfrak{F} = \mathfrak{F}_L(X) \cap \mathfrak{F}$, $\mathbb{E}_i \neq \emptyset$, $i=1,2,\cdots,n$, $\mathbb{E}_i \cap \mathbb{E}_j = \emptyset$, $i\neq j$, $\mathbb{E}_i = X$) and real numbers $\alpha_1, \cdots, \alpha_n \in (0,\infty)$ (where $\alpha_i \neq \alpha_j$, $i\neq j$) such that for any $x \in X$, $s(x) = \alpha_i$ if $\mathbb{E}_i(x) = I$, $i=1,2,\cdots,n$.

Denote the set of all nonnegative simple functions on \mathfrak{F} by H. Proposition3.7 If $s \in H$ has two representations:

 $s(x)=\alpha_1$ if $E_1(x)=I$, $i=1,2,\dots,n$, for any $x \in X$, $s(x)=\beta_S$ if $G_S(x)=I$, $s=1,2,\dots,m$, for any $x \in X$,

(where E_i , G_s , α_i , β_s satisfy the condition given in Def.3.6) then $(\alpha_1, \dots, \alpha_n) = (\beta_1, \dots, \beta_m)$, and if $\alpha_i = \beta_s$, then $E_i = G_s$.

Theorem3.8 Let $A \in \mathcal{F}$, $f \in M^+$. For any $s \in H$, $s(x) = \alpha_i$ if $E_i(x) = I$, $i = 1, 2, \dots, n$, for any $x \in X$,

where \underline{E}_{i} , α_{i} satisfy the condition given in Definition3.6, if we define $Q_{\underline{A}}(s) = \bigvee_{i=1}^{n} (\alpha_{i} \wedge \underline{u}(\underline{A} \cap \underline{E}_{i}))$, then $\int_{\underline{A}} f d\underline{u} = \sup_{s \in H(f)} Q_{\underline{A}}(s)$, where $H(f) = \{s; s \leq f, s \in H\}$.

4. Properties of Fuzzy Integrals on L-Fuzzy Sets

Proposition 4.1 Let $\alpha, \beta \in (0, \infty), \{\alpha_n\} \subset (0, \infty).$

(1) $F_{\bar{\alpha}} \subset F_{\alpha}$, where $F_{\bar{\alpha}}(x) = \begin{cases} I & \text{if } f(x) > \alpha \\ \theta & \text{if } f(x) \leqslant \alpha \end{cases}$, $F_{\alpha}(x) = \begin{cases} I & \text{if } f(x) > \alpha \\ \theta & \text{if } f(x) < \alpha \end{cases}$ $x \in X$;

(2) If
$$\alpha \leqslant \beta$$
 , then $F_{\alpha} \supset F_{\beta}$, $F_{\alpha} \supset F_{\overline{\beta}}$;

(3) If
$$\alpha_n \nearrow \alpha$$
 and $\alpha_n < \alpha$, then $\bigcap_{n=1}^{\infty} F_{\alpha_n} = \bigcap_{n=1}^{\infty} F_{\overline{\alpha}_n} = F_{\alpha}$;

(4) If
$$\alpha_n \rightarrow \alpha$$
 and $\alpha_n > \alpha$, then $\bigcup_{n=1}^{\infty} F_{\alpha_n} = \bigcup_{n=1}^{\infty} F_{\overline{\alpha}_n} = F_{\overline{\alpha}_n}$.

<u>Theorem4.2</u> The fuzzy integrals on L-fuzzy sets have the following properties: (where A, $B \in \mathcal{F}$, f, $f_1, f_2 \in M^+$)

(1) If
$$\underline{u}(\underline{A})=0$$
, then $\int_{A} f d\underline{u}=0$;

(2) If
$$\int_{A} f d\mu = 0$$
, then $\mu(A \cap F_{\overline{0}}) = 0$;

(3) If
$$f_1 \leqslant f_2$$
, then $\int_{\mathbb{A}} f_1 du \leqslant \int_{\mathbb{A}} f_2 du$;

(4) If
$$A \subset B$$
, then $\int_{A} f du \leq \int_{B} f du$;

(5) For any
$$a \in (0, \infty)$$
, $\int_{A} a du = a \wedge u(A)$;

(6)
$$\int_{\underline{A}} (f_1 \vee f_2) du > \int_{\underline{A}} f_1 du \vee \int_{\underline{A}} f_2 du ;$$

$$(7) \int_{\mathbb{A}} (\mathbf{f}_1 \wedge \mathbf{f}_2) d\mathbf{u} \leq \int_{\mathbb{A}} \mathbf{f}_1 d\mathbf{u} \wedge \int_{\mathbb{A}} \mathbf{f}_2 d\mathbf{u} ;$$

(8)
$$\int_{A \cup B} f du > \int_{A} f du \vee \int_{B} f du$$
;

(9)
$$\int_{A \cap B} f du \leq \int_{A} f du \wedge \int_{B} f du$$
;

$$(10)\int_{\mathbb{A}}(f+a)d\mu \leqslant \int_{\mathbb{A}}fd\mu + \int_{\mathbb{A}}ad\mu, \ a \in (0, \infty);$$

(11) For any $a \in (0, \infty)$, if $|f_1-f_2| \le a$, then $|\int_{\mathbb{A}} f_1 du - \int_{\mathbb{A}} f_2 du | \le a$. Definition 4.3 $f \in \mathbb{M}^+$ is called fuzzy integrable on \mathbb{A} , if $\int_{\mathbb{A}} f du < \infty$.

Theorem4.4 $f \in M^+$ is fuzzy integrable on A, if and only if there exists $\alpha \in (0, \infty)$, such that $\mu(A \cap F_a) < \infty$.

Theorem4.5 Let $A \in \mathcal{Z}$, $\alpha \in (0, \infty)$, then

(1)
$$\int_{\underline{A}} f d\underline{u} \geqslant \alpha \iff \forall \beta \in (0, \alpha), \ \underline{u}(\underline{A} \cap F_{\beta}) \geqslant \alpha$$
;
Hence $\underline{u}(\underline{A} \cap F_{\alpha}) \geqslant \alpha \implies \int_{\underline{A}} f d\underline{u} \geqslant \alpha$;

(2)
$$\int_{A} f du \leq \alpha \iff u(\underline{A} \cap F_{\overline{a}}) \leq \alpha$$
; Therefore $u(\underline{A} \cap F_{a}) \leq \alpha \Rightarrow \int_{\underline{A}} f du \leq \alpha$;

(3)
$$\int_{\underline{A}} f d\underline{u} = \alpha \iff \forall \beta \in (0, \alpha), \quad \underline{u}(\underline{A} \cap F_{\beta}) \geqslant \alpha \geqslant \underline{u}(\underline{A} \cap F_{\overline{a}});$$
Particularly, if $\underline{u}(\underline{A}) < \infty$, then
$$\int_{\underline{A}} f d\underline{u} = \alpha \iff \underline{u}(\underline{A} \cap F_{\alpha}) \geqslant \alpha \geqslant \underline{u}(\underline{A} \cap F_{\overline{a}}).$$

5. Convergence for Sequence of Measurable Functions

Definition 5.1 Let $\{f_n, f\} \subset M, A \in \mathcal{F}$.

Write:
$$\overline{D}(x) = \begin{cases} I & \text{if } f_n(x) \longrightarrow f(x) \\ \theta & \text{if } f_n(x) \longrightarrow f(x) \text{ (i.e. } \lim_{n \to \infty} f_n(x) \neq f(x) \text{)} \end{cases}$$

- (1) If $A \subseteq \overline{D}$, then we say $\{f_n\}$ converges to f everywhere on A, and denote it by $f_n \xrightarrow{e_{\bullet}} f$ on A.
- (2) If there exists $E \in \mathbb{Z}$ with $\underline{u}(E) = 0$, such that $f_n \to f$ on $\underline{A} \cap \underline{E}^c$, then we say (f_n) converges to f almost everywhere on \underline{A} , and denote it by $f_n \to f$ on \underline{A} .
- (3) If there exists $E \in \mathcal{F}$ with $u(\underline{A} \cap \underline{E}^c) = u(\underline{A})$, such that $f_n \to f$ on $\underline{A} \cap \underline{E}^c$, then we say $\{f_n\}$ converges to f pseudo-almost everywhere on \underline{A} , and denote it by $f_n \to f$ on \underline{A} .

where $a \in (0, \infty)$.

- (1) If for any given $\varepsilon > 0$, $\underline{u}(\underline{A} \cap T_{\varepsilon}^n) \longrightarrow 0$ as $n \longrightarrow \infty$, then we say $\langle f_n \rangle$ converges in fuzzy measure \underline{u} to f on \underline{A} , denote it by $f_n \xrightarrow{\underline{u}} f$ on \underline{A} .
- (2) If for any given $\varepsilon > 0$, when $n \to \infty$ we have $\mu(\underline{A} \cap (T_{\varepsilon}^n)^c) \to \mu(\underline{A})$, then we say $\{f_n\}$ converges pseudo-in fuzzy measure μ to f on \underline{A} , and denote it by $f_n \xrightarrow{p \cdot \mu} f$ on \underline{A} .
- (3) $\{f_n\}$ is said to F-mean converge to f on A, if we have $\lim_{n\to\infty}\int_{\stackrel{\cdot}{A}}|f_n-f|d\underline{u}=0.$ Proposition 5.3 If $f_n \stackrel{a.e.}{\mapsto} f$ on A, \underline{u} is null-subtractive, then

Proposition 5.3 If $f_n \xrightarrow{a.e.} f$ on A, u is null-subtractive, then $f_n \xrightarrow{p.a.e.} f$ on A.

Proposition 5.4 If $f_n \xrightarrow{\underline{\mathcal{U}}} f$ on X, \underline{u} is autocontinuous from below, then for any $\underline{A} \in \underbrace{\mathfrak{F}}$, we have $f_n \xrightarrow{\underline{p} \cdot \underline{\mathcal{U}}} f$ on \underline{A} .

Theorem5.5 F-mean convergence is equivalent to convergence in fuzzy measure.

6. Monotone Convergence Theorems for Sequence of Fuzzy Integrals

Denote:
$$F_{\alpha}^{n}(x) = \begin{cases} I & \text{if } f_{n}(x) > \alpha \\ \theta & \text{if } f_{n}(x) < \alpha \end{cases} \text{ for any } x \in X,$$

$$F_{\overline{a}}^{n}(x) = \begin{cases} I & \text{if } f_{n}(x) > \alpha \\ \theta & \text{if } f_{n}(x) \leq \alpha \end{cases} \quad \text{for any } x \in X,$$

where $a \in (0, \infty)$.

Proposition 6.1 Let $\{f_n, f\} \subset M^+, A \in \mathcal{F}$.

(1) If
$$f_n \setminus f$$
 on A , then $\bigcap_{n=1}^{\infty} (A \cap F_{\alpha}^n) = A \cap F_{\alpha}$;

(2) If
$$f_n \nearrow f$$
 on A , then $U_{n=1}^{\infty} (A \cap F_{\overline{\alpha}}^n) = A \cap F_{\overline{\alpha}}$.

Theorem6.2 (Monotone Convergence Theorem) Let $(f_n, f) \subset M^+$, $A \in \mathcal{F}$, if $f_n \cap f$ on A, then $\int_A f_n du = \int_A f du$.

Theorem 6.3 (Monotone Convergence Theorem) Let $\{f_n, f\} \subset M^+$, $A \in \mathcal{F}$. If f_n f on A, and there exist n, and a constant $C < \int_{A} f du$ (0 < c), such that $u(A \cap F_C^{n_0}) < \infty$, then

$$\int_{\mathbb{A}} f_n du - \int_{\mathbb{A}} f du.$$

7. Everywhere and (pseudo-) Almost Everywhere Convergence Theorems for Sequence of Fuzzy Integrals

Write:

$$g_{n} = \inf_{i \geqslant n} f_{i} , h_{n} = \sup_{i \geqslant n} f_{i} ,$$

$$H_{\bar{a}}^{n}(x) = \begin{cases} I & \text{if } h_{n}(x) > \alpha \\ \theta & \text{if } h_{n}(x) \leqslant \alpha \end{cases} \text{ for any } x \in X,$$

where $a \in (0, \infty)$.

Theorem7.1 (Everywhere Convergence Theorem) Let $\{f_n, f\} \subset M^+, A \in \mathcal{L}$. If $f_n \to f$ on A, and there exist n. and a constant $C \in \int_{A} f du$ (0 < c), such that $u(A \cap H_{C}^{n}) < \infty$, then $\lim_{n \to \infty} \int_{A} f_n du$ is existent, and $\lim_{n \to \infty} \int_{A} f_n du = \int_{A} f du$.

Theorem7.2 Let \underline{u} be null-subtractive (resp. \underline{u} be pseudo-null-subtractive with respect to \underline{A} , where $\underline{A} \in \underline{\mathcal{F}}$). Then for any $\underline{B} \in \underline{\mathcal{F}}$, we have $\int_{\underline{A} \cap \underline{B}^C} f d\underline{u} = \int_{\underline{A}} f d\underline{u}$ whenever $\underline{u}(\underline{B}) = 0$ (resp. $\underline{u}(\underline{A} \cap \underline{B}^C) = \underline{u}(\underline{A}) < \infty$).

Theorem7.3 (Almost Everywhere Convergence Theorem) Let $A \in \mathcal{L}$, $\{f_n, f\} \subset M^+$, μ be null-subtractive. If $f_n = f$ on A, and there

exist no and a constant $c \leqslant \int_{\underline{A}} f d\underline{u}$ (o $\leqslant c$), such that $\underline{u}(\underbrace{A} \cap H^{n_o}_{\overline{c}}) < \infty$, then $\lim_{n \to \infty} \int_{\underline{A}} f_n d\underline{u}$ is existent, and $\lim_{n \to \infty} \int_{\underline{A}} f_n d\underline{u} = \int_{\underline{A}} f d\underline{u}$.

Theorem7.4 (Pseudo-Almost Everywhere Convergence Theorem) Let $(f_n, f) \subset M^+$, $A \in \mathcal{F}$, $\mu(A) < \infty$, μ be pseudo-null-subtractive with respect to A. If $f_n \xrightarrow{p.a.e.} f$ on A, then $\lim_{n \to \infty} \int_{A} f_n d\mu$ is existent, and $\lim_{n \to \infty} \int_{A} f_n d\mu = \int_{A} f d\mu$.

8. Convergence (Pseudo-) in Fuzzy Measure Theorem for Sequence of Fuzzy Integrals

Proposition8.1 Let $(f_n, f) \subset M^+$, b,c $\in (0, \infty)$, then

- (1) $F_{c+2b}^n \subset F_{c+b}^n \cup T_b^n$;
- (2) $F_{c-b}^n \supset F_c \cap (T_b^n)^c$ (where b<c).

Theorem8.2 (Convergence Pseudo-in Fuzzy Measure Theorem) Let $(f_n, f) \subset M^+$, $A \in \mathcal{F}$, $\mu(A) < \infty$, μ be pseudo-autocontinuous with respect to A. If $f_n \to f$ on A, then $\lim_{n \to \infty} \int_A f_n d\mu$ is existent, and $\lim_{n \to \infty} \int_A f_n d\mu = \int_A f d\mu$.

Theorem8.3 (Convergence in Fuzzy Measure Theorem) Let $\{f_n, f\} \subset M$, \mathbb{R}^n be autocontinuous. If $f_n = f$ on \mathbb{R}^n , then for any $\mathbb{R} \in \mathbb{R}^n$, we have $\lim_{n \to \infty} \int_{\mathbb{R}^n} f_n d\mathbb{R}^n \int_{\mathbb{R}^n} f d\mathbb{R}^n$.

Corollary8.4 (F-Mean Convergence Theorem) Let $\{f_n, f\} \subset M^+$, μ be autocontinuous. If $\{f_n\}$ F-mean converges to f on X, then for any $A \in \mathcal{F}$, we have $\lim_{n \to \infty} \int_A f_n d\mu = \int_A f d\mu$.

Remark: If we take L=(0,1), the conclusions given in this paper are identical with those proved in (6,7,12).

References

- 1 G. Birkhoff, Lattice theory, Amer. Math. Soc. Coll. Publ. 3rd ed. Providence, RI, 1979.
- 2 D. Dubois and H. Prade, Fuzzy sets and systems: theory and applications, Academic Press, New York, 1980.
- 3 J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18(1967), 145-174.
- 4 E. P. Klement, Fuzzy s-algebras and fuzzy measurable functions, Fuzzy Sets and Systems, 4(1980), 83-93.
- 5 Qiao Zhong, Riesz's theorem and Lebesgue's theorem on the fuzzy measure space, BUSEFAL, 29(1987), 33-41.
- 6 Qiao Zhong, The fuzzy integral and the convergence theorems, BUSEFAL, 31(1987), 73-83.
- 7 Qiao Zhong, On fuzzy measure and fuzzy integral on fuzzy set, to appear.
- 8 Qiao Zhong, On the extension of possibility measures, to appear Fuzzy Sets and Systems, 31(1989).
- 9 D. Ralescu and G. Adams, The fuzzy integral, J. Math. Anal. Appl. 75(1980), 562-570.
- 10 M. Sugeno, Theory of fuzzy integrals and its applications, Ph. D. Thesis, Tokyo Institute of Technology, 1974.
- 11 Wang Zhenyuan, Asymptotic structural characteristics of fuzzy measure and their applications, Fuzzy Sets and Systems, 16 (1985), 277-290.
- 12 Wang Zhenyuan & Qiao Zhong, Transformation theorems for fuzzy integrals on fuzzy sets, to appear <u>Fuzzy Sets and</u> Systems.
- 13 L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1(1978), 3-28.