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Introduction
Let a residuated lattice L = <L, +, A, —, ®, 1, 0> be
given, i.e.:
a) <L; A, v, 0, 1> is a complete distributive lattice,
b (L; @, 1> is a comutative monoid,
c) ® is an isotone binary operation on L in béth variables,
d> — is a binary operation on the set L which is antitone
in the first and isotone in the second variable
respectively,

e) <®, —> is an adjoint pair of the operations, i.e.
(V a,b,c €l): (a®b S ¢ @ a = b+c).
We define the operation of the biresiduum as follows:
ae—b = Ca—bldaAlb—ad.
We say that the function f:L"— I fits the residuated

lattice L, iff the following holds:

n k.
(3 k ™) ¥V x,y e.7): 8, 0% Hyi:"s FOx) = £Cyd

where ak= a ® .. ® 2a - k-times, x = C X, oo X D,
y = C Y, - Y, D and k = C k1 .. kn J.
If the function f: L"—— L fits the lattice L then we write
f €L
Let O be a set of functions fitting L. Then
XL; Ay v, ® —, 0, 1, O is an enriched residuated
lattirce.

In this paper we deal with the problem of completenes
of residuated lattices. We answer the following questions
1. Is it possible to express all the fitting functions
using only the basic operations of the residuated

lattice 7?7
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2. If the answer to 1. is negative, what functions must be
added to the residuated lattice to be able to express all
the fitting functions 7

If we consider continous functions on the bicompact
spaces then Weierstrasse-Stone theorem or its Kakudaki-Kreyn

corollary are solutions of the completenes problem (see [51)D.

In this theorem, however, the ring of the functions
with standard operations of addition and multiplication are
considered. But no finite subset B <« CO,1D with
the operation of the multiplication forms a subalgerba of
the algebra <(<0,1>; . ». Therefore, the canonical form of
the functions according the Weierstrasse theorem cannot be
used if the domain of the considered functions is a discrete

set .

In this paper, we start from the canonical form of
discrete functions. This form will then be generalized to

the case of the continous ones.

1. Basic definitions and relations

We introduce the following symbols:
¢ is a set of operations on the set L, A is an algebra
A =<L; . By P € [A]l we denote that P: L™ — L is created

by superposition of operations from A , and

f P = An(f00 « POO)

where f: L"—o L.

1.1. Definition . The algebra A=< L;& > 1is functionaly
complete in the residuated lattice
L =<KL; Ay v, & —, 0, 1>, if

(VEELXYKIXIPelAIXSE +— P > 7)

holds. .
i1.2. Theorem . Let L =<KL; A, v, 0, 1> be a complete
lattice. Then every function f:L"— L can be expressed in

the form of a disjunctive normal form CDNF):

n

= N

fixd Vo (fCa)Ai=1Ja<;xi)) , cid
ael i

wher e
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0 if x = a
J (x> =
a

1 if ¥ = a,

i.e. the function f(x) can be described on the basis of
the system of +the functions (JaCxD : a€l) and constants
{fcad : ael™

Proof . See [1].

1.3. Theorem . Let L be a residuated lattice and & be a set
of functions fitting the lattice L. Then

f € [KL;3>)1 »f &L,

Ci.e. the superposition of fitting functions in L, fits
the lattice LD.

Pr oof . See [3].

1.4. Definition . L is a continous residuated lattice if

the operation of residuum — is continous.

1.5. Definition . The residuated lattice L with L= <0,1>
and the operations of multiplication and residuation defined
by aeb = Oa+b-1), a—b = 1AL1-a+b), is called bLukasiewicz
interval. We denote it by &.

1.6. Remark .The operation of biresiduum in L can be
expressed by

a «+ b =1 aACl-a+h) A C(1l-b+ad =1 A C1-|a-b]|d

1.7. Theorem . Every continous residuated lattice
L=<<0,1>; A, v, @ ,+* ,0 ,1> is isomorphic with the
Lukasiewicz interval b=C <0,1>; w, v, ® —, O, 1 >, i.e.
there is an isotone one-to-one function ¢: <0, 1> — <O, 1>
such that
K xe'yd =g¢C>O0e¢Cyd
holds for every x,y € <0,1>.
Proof . See (4].

1.8. Theorem . Let f@.. Then f is a continous function.

Pr oof . See [3].

1.9. Definition . Let I_k=={0='-lo < l‘ <... < lk=1}. and put
Lol = lovivjio Lo 1 kadk-i+j’

Then the residuated lattiice Lk =<L; Ay v, ® ~+, 0, 1> is
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called the Lukasiewicz chain.
r

1.10. Theorem. Every function f: Lk——o Lk fits the lattice
L .

k
Proof . See [3]. ]

2. Functional incompletenes of the algebra L in
the residuated lattice L
In this section, we demonstrate that no residuated
lattice L is complete in itself, i.e. the fitting functions

in L cannot be expressed only on the basis of the operations
in L.

2.1. Definition . A function f: A"— A preserves a set
B < A, if
{fCx> : xeB™} < B.

A set & of functions preserves a set B if every function

f € & preserves a set B.

2.2. Lemma . Let LL be a residuated lattice. Then

a—+0==-a<1 if a>> o0
a —1 = a
0O — a =1
1 — a = a
a — a =1
holds for all a € L
Pr oof . The following relations hold for every a,b e L
(see [2]1):
a@e@b=<a, a®b-=<hb cad
a — b = Awel a0 < b> c3
If a > 0, then a—0 = Viw : a @ w=<0> <1 sincea®1l =a.
a — 1 = Lo a®ws1>=1 since L is a complete lattice.
O — a = Viw @ 08w < a >= 1 because 0w = O for every w.
1 — a = ,{w: 18w £ a)> = a because 1&w = w.
a — a =, {w: a®w < a> = 1 because a®l = a.

2.3. Lemma . The set [L] preserves the set {0,1>.

Pr oof . The operations a, +, 0, 1 obviously preserve
the set {0,1>.

Since <L;®,1> is monoid, it follows from (2) that @
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preserves the set {0,1>.
If a €< 0, 1> then it follows from lemma 2.2 that —
preserves the set {0,1>.

A superposition of functions preserving the set A
obviously preserves the set A, which implies that

the assertion of lemma is true. [ ]

2.4. Theorem . The algebra L is not functionaly complete
in residuated lattice L.
Pr oo f . Since ¢ — ¢ =1 holds for every c € L

(see 2.2, every constant function fCxd = ¢ €L fits

the lattice L.
We will demonstrate that no constant different from O,
1 can be approximated by functions from L.

Let P e (LY and ¢ < 1. Then
P = N P < P
— C = ln ( Cx) C) 3 Cy)H [

holds for every y e L".

Set y=0 .Then we obtain
P e c £ PCOD e
It follows from lemma 2.3 that PCO> e {0,1>.The inequality
PCO) += c = CPCODa ) A Ccs PCODD £ ¢ A =

then follows from lemma 2.2 which results in

PCOD «— c £ c =« < 1 30

for ¢« € LN{O, 12>.
Since €32 holds for every function P & [L]l, the theorem is

proved. [ ]
3. Functionaly complete algebras

In this section, we construct a functionaly complete
algebra for the residuated lattice Lk' This result is then

generalised to the L. We will use the following notation

X = X — 0 =1 Al - x3 =1 - X
X By =0 -y =1 alx + ¥y

NX =X & ..8xX =1 A Cn.x
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X EX®. ..8Xx =0 wln.x - {n - 15>

[
]

[
&
@
[
1l

) .. . 1 .
i 1 i OwAni—kin-1»

3.1. Theorem . The algebra

Ak = <Lk; A v, ® —, {a: ae Lk}>
is functionaly complete in residuated lattice L%.

Pr oof . It follows from theorem 1.10 that every
function f: L:——a I_k fits L%. We will demonstrate that each
f can be described using some superposition of fitting
functions.

According to theorem 1.2, every function in a complete
lattice Cand, thus in Lk as well) can be expressed using a
DNF (1). The vector a = Cai.az....anb in €1) does not depend
on the variables x = Cxi...xr'\D. and so fCad is a constant
function. Therefore fCad fits L&' We will demonstrate that
it is possible to express the function JaCx) using a
superposition of constants and functions from Lk and so
JaCx) fits <I'...k according to thecrem 1. 3.

It follows from the definition of the residuum in L} that:

a & X = lk = 1 if x=a

a «+ x =< llc1 if x#a
n

k-1 0C mtk~1)-kin—1))

For n 2 k we obtain

Then

JaCx) = (X a)k ,

holds for every a, x & Lk' Using theorem 1.3 we verify that
the assertion of the ‘thecrem is true. [
3.2. Theorem. The algebra
A = <C0,1>; A, v, ®, —, {arae <0,15>>
is functionaly complete in &.
Pr oo f . According to theocrem 1.8 it is sufficient
to prove that every continous function can be aproximated

with an arbitrary precision by some superposition of
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functions from A.

Let

P (ki = 2% o adk cad

where a, x € L and k e« IN.

¢aCk,x) is analogous to the function JaCxD from the previous
theorem. It can be seen from (4) that it is a superposition
of the constants and of the operations on L and so it fits
i..

Consider a set of equidistant points

Bk = i(a.L :oa= ia1> 8D

where k. €e N, 1 =0, 1, 2,...k and a = v (x € <0,1> : kx = 1>
We can see from (5) that every set Bk can be constructed on
the basis of constants and operations in L.

Let
ia]
F‘thD ='v(¢a§n.x) ~ fCa_L)) ed
L=1 L
where a € B .
t ™

Fan) obviocusly fits L.

In L the relations (4D, (8) have the next form :

1
- < =
1 |x al| < >
1 1
= -_ - — -— < >
¢aCk.x) 2 2k | x a| 5% = I al = ” C4°’D
1
- >
o] |x al 2 o
- 41 2 k"" »
Bk - { O' 'k-p :' k » 1 } CS D

It can be seen from C4’) and (6> that, in the interval

(.:1,L .aL+1). FanD depends only on the functions ¢aCn.xD.

1
@ Cn, x). Assume fCad < fCa O (the case fCa 3> = fCa)>
a ie1 L 1+4 L+4 L
is examined analogously). In L, we have
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fCa D xel rcty xel
L ES n 1

F x> = ¢ Cn,x xel = 2nx - 2i xel 6D
n a‘L‘H 2 2
fCa D el fclrty xel
L+ 4 8 ™ : |

where
= ) = ¢ 2 L4t oeck
Ii— 4 a, /\{x.qbaCn,x) = ¢aEn.x)}> < = = + - fcn) >

, n
L+ 4

= : > . > =
I,= < Mg, (ny3d 2 ¢.Cnsdh, Axig, (nyO 2 £Ca D} >

i+ 4 i i+ 4
L 1 i i 1 1+1
=g =+ — (D , = + — fC > >
n Zn n n 2n n

- - = L _1 L+14 L+
Ig {Nx:¢p_ Cnyxd 2 fCaL o}, aL+1) £ -+ anC — D, — >
i+d
It will be demonstrated that
. N
(v n<1) (3 ne N) ie‘o")(F‘an)H £f(xd) > n . 7D

It follows from remark 1.8 that (7) is equivalent to
the condition
(Ve>0)(An e N) : C|fd - F‘an)| < & cad

The middle member of the expression (6’) can be arranged as

follows
F () = C1-1dfcy + rrcttly,
n n 12
x - (L + — rciy)y
where 7 = 2n .n‘ n .n e <0, 1>, X € Iz'
fc‘: - fCiD

Let us verify whether the condition (8) is fulfilled.
Then

[ £C30 -FCLD | xe I
n 1
|£C3-F €30 |= C1—1’D|f‘C>O-fC%)| + r|fo>—fc":‘>| xe I_ cod
|£C —fCitiy xe I
n 3

The function f is continous on <0,1> and so

Y £>0).(3 &0) : |x - ‘:] < 5 - |£C - fC%)] <e Ci=t..nmd
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holds in the points a € B .
n

It xe I UI ul then
1 2 3

L+1

i 1 _
max(|x - —[,|x - D < ==6,

implies

max( | £Cx — fCi—)l.lf‘(x) - fetrh < o

n

According to (8), the conditions (8) and therefore (70 are
fulfilled.

It has been demonstirated that every continous function
f: <0, 1> — <0, 1> and, due to theorem 1.8, every fitting
function, can be aproximated by functions from A with an
arbitrary precision.

The function f:<0,1>"—» <0,1> - can be examined
analogously. Its aproximation is

r
= A
FOo=y (fa a A ¢ (nxd) 10D

aeB i
n

where a = Cai,az. ce ,ar), ae Bn . ]
3.3. Conclusion . The operations ®, -— in the residuated
lattice Lk with support Lk = <0, %. e e k-t
the projections of ® -— in lattice & to the set Lk, and so,

s 1> are

the algebra Ak from theorem 3.1 is subalgebra of algebra A

from theorem 3.2.

I would like to thank to Vilém Novdk who suggested
the topics and whose comments and encouragement were very

much helpful in the preparation of this paper.
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