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Abstract

We deal with the problem of classifying electrocardiograms in the presence of uncertain
fuzzy environment. Referring to the classification scheme, both the labels used to describe the
features of the patterns and class assignment (membership functions) are viewed as fuzzy sets.
The main classification structure consists of three stages: (i) matching the input patterns; (ii)
transformation of the result of matching from the feature space to the space of class
assignment. The classifier is designed (trained) with the aid of real-world data set.
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1. Introduction

In many real-world pattern recognition problems, a factor of uncertainty cannot be
neglected. Its influence depends heavily on a complexity of classification tasks at hand.
Usually two main sources of uncertainty pertaining to fuzziness are reported, namely fuzziness
coming from the process of feature determination and uncertainty related to class labelling.
This usually holds true in medicine or biology, that a particular pattern (object) could belong to
some classes at a certain degree varying between 1 (complete belongingness) or 0 (which
excludes any link of the pattern to the class being considered). The first source of uncertainty
mentioned above results as a consequence of properties of cognitive processes of the human

being. In existing references concerning ECG interpretation, an occurrence of these sources of
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fuzziness can be easily observed, cf. [1] [4]. The aim of this paper is to discuss an application
of fuzzy classification scheme in the field of analysis, recognition and interpretation of ECG
signals. An underlying background assumes that we deal with fuzzy labels as well as with
imprecise class assignment values.

The paper is organized in three sections. First of all, we consider the structure of the
classifier and discuss the relevant matching principle. In sequel we present numerical results
concerning the performance of the classifier.

2. A structure of the classification procedure

Let us consider a feature space X consisting of "m" coordinates, i.e.

X=X,;xX,x.xX= X X;
i=1

For each coordinate of X we deal with a set of linguistic labels having a clear interpretation in a
context of the specified application. The labels are represented as fuzzy sets. For Xy we get

kK & &
X1 > Xz o Xy X 200,11 k=1,2,...,m

Let "c" classes @;, 1,...0 also be distinguished. For each pattern in a learning set a class
membership function can be specified. It is put down in a vector form,

Q=[ofo;) wy)... o)

where Q(m‘), 1=1,2,...c, denotes a grade of membership to the 1-th class.
A general structure of the classifier is displayed as follows:

Teamure-class .
[maiching |— - rmation nverse maichin

A key issue which plays a significant role in the above classifier refers to matching of
fuzzy quantities. Due to existence of fuzzy labels the features of two patterns match to a certain

degree (partial matching). This result of matching strongly influences (via a transformation
block namely feature-class transformation) a degree of matching of their class membership. As
known in literature in fuzzy sets two fuzzy sets could be compared in different ways. One
alternative studied in detail in [3] has a straightforward logical interpretation. Denote by "a"
and "b" grades of membership which are to be compared.

The equality index 2 = b can be conveniently defined in the following ways:



@) a=b=(a—>b)&(b—a) ¢))
and
G) a=b=(a—1b)&([b -2 V)
In (1) and (2) implication, &, and ~ are represented by means of pseudocomplements,
t-norms and negation operator. Thus one has:
a—-)b=sup{ce[0,1]| atcsb},
a&b=tfa,b)
a=1-a.
where "t" denotes a triangular norm. Relevant plots of (1) and (2) for t-norm specified as
product are contained in Figs. 1 and 2, respectively.
It is evident that they are asymmetrical around a point at which the equality index attains

1.0. To diminish this property it is worthwhile to take an average value of (1) and (2). Thus
we have:

a:-='b=%— ((aq)b) A (boa) + [(1-ajp{1-b)] A [(1-b)(p(1-a}]> o
a,b € [0,1]. This equality index is displayed in Fig. 3.
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Fig. 1. Plots of the Equality Index (1)
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Fig. 3. Plots of the Equality Index (3)
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An interesting problem arises when one is going to determine all grades of membership x
satisfying an inequality

a=x2y @)
for a and yprovided. It has been proven in [3] that (4) always possesses a nonempty set of
solutions forming a subinterval of [0,1]. For y=1.0 it reduces to one point (equal to {a}) while
for y=0 we get the entire unit interval.

Returning to the general scheme of pattern classification let us discuss its components.
Matching is performed with the aid of the equality index (3) knowing the grades of
membership of the pattern and the prototype to different linguistic lables specified in the
coordinates of the feature space. The result of matching is a vector 1 for which a number of
coordinates is equal to the number of the features, while the i-th coordinate is equal to an
averaged value of the equality index of the consecutive grades of membership taken with
respect to the existing linguistic labels. In sequel 1 is transformed into an equality index for

each element of the class assignment space, so we deal with "¢" different transformation

They specify how strongly the class membership of discussed pattern resembles the class
membership of the imposed prototype. In sequel we make use of inverse matching. This stage
is based on the solution of the inverse problem. Then, not aggregating x after the prototype
has already been selected, a resolution of the inverse problem is formulated in such a
framework: for each ®; determine solutions of inequalities b;=x > §, i=1,2,...,c where b;
denotes a grade of membership of the prototype at the class ;. Hence the result is obtained in
the form of the interval [b;_ b;,]. Its width as well as its distribution in the unit interval would
serve as a good means for graphical displaying of the precision of the matching. The
determination of the transformation functions could be conveniently realized in a form of a
neural network, cf. [2].

An overall structure of the system of ECG classification is presented in Fig. 4.
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Fig. 4. The Structure of the Classification System

3. DNumerical Studies

The standard 12-lead electrocardiogram is a group of 12 signals coming from leads
named I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6. They represent the electrical
activity of the heart recorded from the body surface. These signals convey an important
information concerning the electrical behavior of the heart. The features are related to
durations, amplitudes, areas and shapes of the various waves in each lead. Despite a long
tradition of electrocardiography (over 70 years) the definitions of the basic paramters are not
clearly stated. This is of particular interest in computerized classification system. To overcome
inadequate standardization of definitions and of measurement rules, a European project called
Common Standards for Quantitative Electrocardiography (CSE) has been launched in 1980 [4].

A data set at hand consists of 200 patterns (ECG signals) assigned to three different
class, ®;, ®, and w5 namely, Normal, Left Ventricular Hypertrophy and Right Ventricular
Hypertrophy. Each pattern is characterized by a matrix containing degrees of possibility of
each feature (16 different features have been taken into account) with respect to three fuzzy
labels (quantities) defined in every coordinate of the feature space. These degrees specify to
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which extent the particular feature fits any of these catagories (the categories were labelled as
NORMAL, BORDERLINE and ABNORMAL). The set of grades of membership to the

classes taken into account consists of the following expressions: complete exclusion (0.0); fair

membership (0.33); strong membership (0.66); and complete belongingness (1.0). The
membership functions of different subclasses are summarized in Table 1.

!
|

1 o O 0.33) 1
2 0 o 0.66) 2
3 0 o 1] 4
4 0 033 0] 1
5 [0 033 0.33] 2
6 0 066 0 7
7 0 1 0] 10
8 [033 0 0] 9
9 {033 0 0.33] 2
10 [0.33 033 0] 2
11 [0.33 0.33 0.33] 2
12 [0.66 O 0] 11
13 [0.66 O 0.33] 1
14 [0.66 0.33 0] 2
15 m o 0] 44

Table 1. Membership functions of different subclasses
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In the general scheme already discussed in the previous section, the linear one-layer
neural net is implemented, viz. the equation of the input-output relationships are expressed by

g,= w:rn, t=1,2,3 §=[§1§2§3]T

The classification rule for any input pattern is based upon results of its matching with the
prototype of each class. Thus the following sequence of steps should be realized: match the

. T .
input pattern with the prototype of each class. This yields n and in sequel W n=E. Assign the
pattern to the class for which a sum of coordinates of § attains maximum. Simultaneously §

could serve as a measure of goodness of fit. It is noticeable to discuss some categories of

classification errors (here Q refers to the original vector of membership while £2 denotes the
result of classification):

() lack of any misclassification error;

(i) the fuzzy sets Q and Q specify exactly the same class or classes but with different
degrees of membership;

~

(iii) the fuzzy sets Q and Q have a non-empty intersection. It expresses a situation in
which different classes are indicated, however, there are also some classes for

which both Q and Q have nonzero grade of membership;
(iv) complete misclassification.

The overall statistics concerning classification errors with the categories distinguished is
summarized in a table below,

number of errors i ii iii iv
of the category

patterns 1-100

(learning set) 40 22 24 14

patterns 101-200
(testing set) 29 41 19 11

Considering the fourth category of error, we easily observe that the classification error is
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equal to 14/100=14% for the learning set, 11/100-11% for the testing set and 25/200=12.5%
for the whole data set. These numbers are not high bearing in mind the number of classes
distinguished (15) and the number of all the patterns available.
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