Some Notes On The "A Value-Raising Method For Finding

Fuzzy Transitive Closure"

Shi K. Q. Cao D. F.

Department of Mathematics, Liao Cheng Teachers' College, Shandong , China.

In paper (1), Xiao Xian has given the value-raising method for finding the transitive closure of a fuzzy similar matrix R. In this article, we shall show that the result given by the value-raising algorithm doesn't agree with the results given by the usual algorithm. The value-raising method for finding transitive closure is called "the value-raising method" in following contents for short. For the matrix R, using the value-raising method and the usual method, we can obtain the transitive closures \widehat{R}' and \widehat{R} respectively. Here, the usual method means the fuzzy compound-computation.

§ 1 Finding R'

Let R be a fuzzy similar matrix, r_{1-J-k} be a small rectangle with its one vertex on the main diagonal of the matrix R, where i, j, k denote the columns and rows of vertexes of r_{1-J-k} in the matrix R. From (1), we can see that, in R, there exist i, j, k, i < j < k, such that a element (\neq 1) in r_{1-J-k} is smaller than the rest two elements. Then we replace the smallest element with the secondary big one in r_{1-J-k} . Symmetrically, we change the symmetric number in R. Such a changed-matrix is called the value-raising matrix of R. If all r_{1-J-k} of R satisfy the condition as the above small rectangel does, we can obtain the transitive closure \hat{R}' of R, and the example 5 in (1) gave it a algorithm.

§ 2 Some Notes

 The clustering result from the value-raising method doesn't agree with the result from the usual method. Reverse example 1,

let R be a fuzzy similar matrix,

$$R = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0.4 \\ 0 & 1 & 0 & 0 & 0.8 & 0 & 0.8 & 0.2 \\ 0 & 0 & 1 & 0.4 & 0 & 0.2 & 0 & 0.2 \\ 0 & 0 & 0.4 & 1 & 0 & 0.2 & 0 & 0.5 \\ 0 & 0.8 & 0 & 0 & 1 & 0 & 0.4 & 0 \\ 0.5 & 0 & 0.2 & 0.2 & 0 & 1 & 0 & 0.8 \\ 0 & 0.8 & 0 & 0 & 0.4 & 0 & 1 & 0 \\ 0.4 & 0.2 & 0.2 & 0.5 & 0 & 0.8 & 0 & 1 \end{bmatrix}$$

Using the value-raising method and the usual respectively, we obtain the transitive cloures \hat{R}' and \hat{R} as follows:

Using the matrix (2) and (3), we have the culster figures when $\lambda=1$, 0.8, 0.6, 0.5, 0.4 and 0.2

It is well-known that when λ decreases, the classification becomes thickness. When $\lambda=0.8$, Fig. 1 shows that u_{\bullet} and u_{\bullet} belong to one class $\{u_{\bullet},u_{\bullet}\}$. With λ decreasing (for $\lambda=0.5$), u_{\bullet} and u_{\bullet} split into two classes, $\{u_{\bullet}\}$, $\{u_{\bullet}\}$ and so on. Obviously, the above results don't agree with the results from \widehat{R} .

We point out that,

- 1° The example 3 in (1) showed that, using the value-raising method, the results of \widehat{R}' and its clustering Fig. agree with those using the usual method. It is a concidence. If the result of example 5 in (1) is tested by using the value-raising method, the conclusion is not correct.
- 2° For the number i and j (i, j=1, 2, ..., n), if s, and s, are two classifications of U, then $\bigcup_{i=1}^n s_i = U$, and $s_i \cap s_j = \varphi$ ($i \neq j$). When λ is determined ($0 \leq \lambda \leq 1$), the corresponding fuzzy clustering is unique for the concrete fuzzy matrix. This clustering doesn't depend on the algorithm.

 3° In the clustering analysis, we often use the compound computation to find the \widehat{R} for a fuzzy similar matrix R. Indeed, there is a value-raising problem for $\mu_{+}(x_{1}, x_{2})$. Here, the "value-raising" means that, suppose $\mu_{+}(x_{1}, x_{2}) = \min\{\mu_{+}(x_{1}, x_{2}), \mu_{+}(x_{2}, x_{1})\}$, then we take the biggest one from all those $\mu_{+}(x_{1}, x_{2})$, i.e.

 $\begin{array}{c} \overset{\text{\tiny n}}{\underset{\text{\tiny $P=1$}}{\bigvee}} \left[\mu_*(x_{\scriptscriptstyle 1}, \; x_{\scriptscriptstyle 2}) \wedge \mu_*(x_{\scriptscriptstyle 2}, \; x_{\scriptscriptstyle 3}) \right] & \text{for i, j=1, 2, \cdots, n.} \\ \text{The value-raising in } \left\{ 1 \right\} & \text{is the value-raising between two elements } \mu_*(x_{\scriptscriptstyle 1}, \; x_{\scriptscriptstyle 2}), \\ \mu_*(x_{\scriptscriptstyle 1}, \; x_{\scriptscriptstyle 2}) & \text{or between } \mu_*(x_{\scriptscriptstyle 3}, \; x_{\scriptscriptstyle 1}) & \text{or } \mu_*(x_{\scriptscriptstyle 3}, \; x_{\scriptscriptstyle 2}) & \text{in R, this raised-value} \\ \text{replace the raised-value of } \mu_*(x_{\scriptscriptstyle 1}, x_{\scriptscriptstyle 3}) & \text{on U. As for some clustering} \\ \text{analysis, the result of value-raising method is not correct. Then, the} \\ \text{value-rasing method in } \left\{ 1 \right\} & \text{is not practical.} \end{array}$

2. The condition $x_1 < x_2 < x_3$ of Therom 1 in (1) is meaningless.

Reverse example 2:

Let U be a western-style clothes set of the same size. According to the similar degree of their colour, let u_i , $u_j \in U$, we have the similar matrix R (i, j=1, 2, ..., 8)

Obviously, we obtain \widehat{R} from R (the concrete form of \widehat{R} is omited). For the arbitrary $u_1,u_2,u_k\in U$ in \widehat{R} , their subordinates degrees are $\mu_*(u_1,u_2)$, $\mu_*(u_2,u_k)$ and $\mu_*(u_1,u_k)$, their must have two of them being equal for a arbitrary r_{1-2-k} , and the third one is not smaller than the former two. Among u_1,u_2 and u_k , there have not the relation, $u_1< u_2 < u_k$. Even if we pick up the elements x_1,x_2,x_3 from [0,1] to construct a Fuzzy similar matrix R, without the condition $x_1< x_2< x_3$, we still can obtain the \widehat{R} .

We should point out that,

- 1° In practice, the domain U is not taked from real set when we are doing clustering analysis.
- 2° For the example 5 in (1), \hat{R}' is obtained by applying the value-raising method to the example 3, the condition $x_1 < x_2 < x_3$ in theorm 1 is useless.

§ 3 Revising Theorm 1

Theorm. Let R be a n-order, two-face fuzzy similar matrix on $U\times U$. R_{i-J-k} be a set of small retangles with their one vertex on the main diagonal of R. For u_i , u_j , $u_k\in U$, let their subordinate degrees be $\mu_*(x_i, x_j)$, $\mu_*(x_j, x_k)$ and $\mu_*(x_i, x_k)$. For arbitrary $r_{i-J-k}\in R_{i-J-k}$, if and only if two of those subordinate degrees are equal and the third one is not smaller than either of former two, the R be a two-place fuzzy transitive matrix \widehat{R} on $U\times U$, that is $\widehat{R}=\widehat{R}$.

Collary. Let \hat{R} be a two-place fuzzy transitive matrix on $U\times U$. For $u_1,u_2,u_3\in U$, let their subordinate degrees be $\mu_*(u_1,u_2), \quad \mu_*(u_2,u_3), \quad \mu_*(u_1,u_3)$ respectively. For $r_{1-1-k}\in R_{1-1-k}$, There exist two subordinate degrees being equal, another is not smaller than the former two, where i, j, $k\in\{1,2,\cdots,n\}$.

References,

- 1. Xiao Xian, A Value-raising Method for Finding Fuzzy Transitive Closure. FUZZY MATHEMATICS, Vol. 5, No. 4, 1985, Wuhan, China.
- 2. Wang Peizhuang, Theories and Applications of Fuzzy Sets, Shanghai, China, 1983.
- 3. Dubois H. And Prade H., Fuzzy Sets and Systems, Theory and Applications, Academic Press, 1980.