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ABSTRACT

In this paper ve study some fundamental issues associated with
the fuzzy modelling of physical systems and the design of fuzzy logic
controllers. In particular, we look at the fuzzy logic controllers
in retrospective which are based upon the fuzzy IF ... THEN rules and
have fuzzifier [F] and defuzzifier [DF] in their structure. Also, we
look at the cognitive controller in perspective which can be designed
using some nonlinear functions, this nonlinear functions are nothing
more then the mapping function of IF ... THEN rules. Thus, by
emulating the IF ... THEN rules by nonlinear functions, one can
simplify the design of fuzzy controllers - yielding a newv class of
controllers - we call them cognitive controllers. ‘
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1. INTRODUCTION

In our everyday life, ve are faced with systems with diverse
levels of complexity. Usually one has to act with respect to these
systems while designing and performing a decision process within
vhich a certain sequence of actions (controls) has to be completed.
The very first step which is being of primordial importance is,
howvever, to perform a cognitive process on the system itself. Ve
should stress that a depth and a level of generality of the cognitive
act strongly depend on a specifity of the task to be performed as
wvell as on the complexity of the system itself. It is worthwhile to
recall here a principle of incompatibility {[13,14] which
transparently underlines a conflicting character of the precision of
the model and a degree of its generality.

It is obvious that due to the cognitive features of the human
thinking process, we need a certain form of a model. In a wvay, the
model reflects upon the human perception of the world. Hence when
studying diverse classes of fuzzy models, one should clearly realize
a range of their applicability and, simultaneously, a scope of its
generality.

In the 1light of the above remarks, we will investigate
principles of fuzzy modelling, study links that exist between the
concepts of fuzzy modelling and fuzzy controllers, and will indicate
methodological issues concerning the design and utilization of
cognitive controllers using neural-like layers.

2. FUZZY MODELLING

Returning to the remarks made in the Introduction, there is a
striking difference between '‘fuzzy modelling’ and ‘modelling of
physical systems’ based only on collected numerical data.

Concerning human perception and cognition mechanisms, it has
been known that our way of dealing with real-world phenomena is of a
qualitative and of non-numerical nature [6]. In our decision making
process, a mass of numerical data are converted into some qualitative
form. Thus, we deal only with aggregation forming a set of
linguistic labels. Sometimes, they are referred to as information
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granules, [15]. Aggregation of information makes the partition of
space more manageable for further processing. At the level of these
granules all cognitive and inference processes are carried out. In
other words, this vay of granular perception implies that one deals
vith relationships or functions between linguistic labels rather than
numerical quantities. To cope with this style of cognition a
suitable modelling technique should be developed. Since the theory
of fuzzy sets deals with such granularity of our cognition, the use
of this theory in modelling the physical systems should be very
useful.

To visualize 1links between a physical system and its fuzzy
model, we refer to Fig. 1. Like in any probabilistic modelling, a
fuzzy model strongly refers to the vay of our perception of the
reality since nothing is fuzzy with the system itself. Of course,
this is also true for any probabilistic model as well. For instance,
the parameters in a model that are considered as random variables
refer only to the way of coping vith uncertainty (non-uniqueness)
resulting in a modelling process. Therefore, the notion of a fuzzy
system should be understood as a concise denotation of a physical
system depending upon our perception of its dynamic behavior.
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Pigure 1  Fuszy Modelling: A Link Betveen a Physical System and its
Fuzzy Model via Perception
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Let us recall some main approaches to fuzzy modelling focussing
our attention mainly on those streams of investigations where
supporting mathematical methods have already been well available in
the literature.

(i) Puzzy Relational Equations

Vithin this framework, one builds a fuzzy model that establishes
links between inputs and outputs of a system in terms of fuzzy
relations. Therefore, a main tool utilized here is a calculus of
fuzzy relations. The fuzzy relations specify grades of connections
(interrelationships) between different linguistic labels (information
granules) defined in a given universe of discourse for input and
output variables. The higher the grade of membership, the stronger
is the relationship between the particular labels (fuzzy sets). For
the value of membership equal to 1, one gets a strongest
relationship. At the same time, the value of the membershp set to O
excludes any relationship.

In a formal way, the fuzzy model with one input and one output
(state) variable of a dynamic system can be written as [5,7,9]:

U =U 0X

0X 0
+

R OR (1)

kep = Uk Xep-1

vhere "p" stands for the order of the fuzzy model.

In a framework of fuzzy relational equations, [4,10], a lot of
plausible methods enabling one to obtain exact or approximate
solution [8] of model equations have been derived. They can also be
used for system identification purposes [9]. Moreover, some studies
towards expressing a relevancy of fuzzy models have also been
performed.

(ii) Fuzzy Arithmetic and Fuzzy Numbers

The Arithmetic of fuzzy numbers is an interesting generalization
of "crisp" arithmetic and interval calculus ([1]}. For recent
overview, the readers are referred to [3,4] which lay the foundations
of fuzzy arithmetic with various engineering applications. An
example of the fuzzy model with fuzzy numbers forming at certain
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analog of (1) is

xk+p =B 6 Uk + A, 0 X

1 k+A

8 X
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vhere parameters of the fuzzy model are modelled using the fuzzy
numbers B, Al, AZ’ cen Ak+p-1'
3. FUZZY CONTROLLER PARADIGM. MODES OF UTILIZATION OF THE FUZZY

CONTROLLER

As discussed in numerous papers concerning fuzzy logic
controllers, the concept of the fuzzy controller has been created in
order to formalize and implement a strategy of an expert human
operator for controlling the ill-defined complex systems. The
controllers are designed using IF ... THEN rules and has a
significant value for complex and ill-defined problems. Two main
advantages of fuzzy logic controllers should be clearly stated:

(1) No formal model of the system under control is necessary. It is
assumed that the knowledge about the system is "hidden" somewhere in
the control rules themselves. Recent VLSI implementations of the
fuzzy controller have made it possible to find many fields of
applications.

(1i) There is no need for explicit articulation of optimization
criteria (performance indices, objectives of control) which are
sometimes extremely difficult to establish properly. Optimization
criteria are usually a result of reaching a certain compromise
between a specifity of the problem of control (system under control)
and a computational feasibility (control policy could be given in an
analytical wvay).

Referring to the scheme contained in Fig. 1, it is worthwhile to
distinguish several modes of utilization of fuzzy controllers. These
modes are directly related to the way in which the information about
the system is grasped as well as it depends on a way the influence of
the controller on the system is affected. At least two modes are
recognized:

The first mode which is often met in practice nowvadays relies on
using the fuzzy controller in a closed-loop mode as indicated in
Fig. 2.
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Pigure 2 Closed-Loop Systeas vith a Fuzzy Logic Comtroller

Notice that we need two interface blocks which tie the fuzzy control-
ler and the physical system. They are necessary to make the fuzzy
controller work at the real-world layer. These two blocks are known
in the 1literature as a fuzzifier (F) and a defuzzifier (DF),
respectively. The goal of the fuzzifier is to translate a numerical
information coming from the system (ie. an obvious example of such
kind of information would be error and rate of change of error) into
a format acceptable by the fuzzy controller developed on the basis of
some linguistic information. This is accomplished in the following
tvo wvays:
(a) The first method utilized in earlier versions of the fuzzy logic
controller where discrete universe of discourses are considered.
This method treats the numerical value of a physical variable as a
fuzzy singleton, viz. a fuzzy set with a particular membership
function, which is equal to 1 for exactly one element of the universe
of discourse. This form of implementation results into an increasing
demand for memory occupation for higher number of the discretization
levels.
(b) In the latest versions of the fuzzy controller, a numerical
value of the output of the system is mapped via membership function
of continuous linguistic labels defined in the appropriate space.

The defuzzifiers (DF) indicated in Fig. 2 transforms the fuzzy
set of control into a simple numerical quantity that is required to
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control the physical system. This quantity is established on the
basis of the membership function of the fuzzy set of control bearing
in mind either a location of its maximal value or its shape. 1In
principle, the same phase has to be completed in situation when a
stochastic control is studied and a probability density function of
control 1is specified. For extensive and detailed studies, the
readers are referred to [2) and {7].

The second mode of the use of the fuzzy controller is related to
its supporting capability. Then the closed loop system shown in Fig.
2 does not exist and, in fact, the outcome of fuzzy controller is
displayed to a user who is responsible for taking a final nonfuzzy
decision. Hence the fuzzy controller serves as a user-friendly
decision supporting system. And the main objective which has to be
fulfilled is to put a flexible linguistic interpretation of the
control action which has to be taken. In this situation techniques
of linguistic approximation are of significant help. Notice that we
are using the fuzzy controller at the same conceptual level at which
it has been constructed. Therefore, a great amount of research
should concentrate on development of fuzzy models. The fuzzy models
are, without any doubt, a useful tool for designing and analyzing the
fuzzy control algorithms. A main reason standing behind their
development is that both the fuzzy model and the fuzzy controller
operate at the same level. This forms a useful modelling environment
for testing a performance of the fuzzy controller and its subsequent
improvement.

For instance, one could design different control policies
referring to different levels of precision of goals and constraints
formulated in the control problenm.

In the following section, we will discuss an aspect of
development of fuzzy controllers in a more general setting of
cognitive controllers.

4. COGNITIVE CONTROLLER - A NEV VAY TO RERALIZE THE LINQUISTIC
CONTROL RULES
Returning to the first method of wutilization of fuzzy
controllers for control in a closed loop system, it is of interest to



113

indicate two possible ways for its further refinement. First of all,
it should be observed that the stages of fuzzification and
defuzzification are not consistent with regard to the entire concept
of the fuzzy controller originating at the conceptual level. Both
the blocks displayed in Fig. 2 form the interface to the system but
do not defuzzify, or better to say, modify the structure of the
controller itself. From an applications point of view, the fuzzy
controller should possess numerical input and output. For instance,
for a common control algorithm making use of error (e) and rate of
change of error (de) one deals with a family of triplet (en, den, un)
obtained at discrete time instants, n =1, 2 ... N, (Here we do not
specify in which wvay v, is determined from the fuzzy set of control).
Then one can look for a nonfuzzy, usually nonlinear relationship
describing the controller. 1In [2], a structure was proposed which
contains nonlinear elements each for error and change of error,
respectively. For the structure established in such a vay, one could
determine the relevant parameters in a classic vay, ie. with the aid
of the least square error method. It should be, however, pointed out
that the form of nonlinearities stems from the human experience
involved in the control of dynamic plants. For instance, the kind of
nonlinearity applied for error reflects upon the need for a gradual
modification of a damping factor to get a rapid, yet without
overshoot, system response.

Another approach, bearing in mind the results of manual control
applied to the system and recorded in an appropriate format, is to
design the relevant controller making use of neural network structure
shown in Fig. 3.

The nonlinear elements on the input of the neural network are
formed by membership functions of relevant linguistic labels the same
wvay as applied in the rules of linguistic control protocol (viz. a
set of conditional IF ... THEN statements). A neural layer following
these elements is learned by methods known in relevant references of
neural nets. The outputs of this layer refer to levels of activation
of consecutive fuzzy sets of control (standing in "then" parts of the
statements of the control protocol). The second neural layer

produces a final nonfuzzy control action.
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Figure 3 A Generalized Framevork for a Cognitive Controller Using
Neural Network

An open question remains, hovever, to deal with the efficiency
of learning with respect to nonlinearities used at inputs of each of
the layers as well as interrelationships between membership functions
corresponding to the linguistic labels. This perhaps will involve a
deeper insight into a role of information granularity and its
specifity in learning phase. 1In a more general context, one could

investigate a role of fuzzy information in cognitive and learning
processes.
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S. CONCLUSIONS

In this paper we have formulated several important issues of
development of methods of fuzzy control indicating main aspects of
extensions of existing algorithms. An idea of cognitive control has
also been formulated. Two main modes of performance of the cognitive
controller also need further studies to get an overall picture for
its effective utilization. It seems that the new philosophy outlined
here under the frame work of cognitive controller with neural like
decision layers with learning and adaptive capabilities has a
challenge for future research, and may see a very bright future from
applications point of view.
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