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1. Introduotion

Let us start with a simple (non-fuzzy) regression example,

Asgume, in a certain situation a linesr regression model
Y(x) = £(x)T +€ ; Ee = 0 ; Vare = 62; x¢ RE;J€R” (1)

is considered and we are interested in estimation of a linear

funetional of v, say
m=clt ; cerT . (2)
Then, based on n (point-shaped) observations Y(xi) = Y, in

the moat cases the well~known least squares estimator (LSE)
v v v
M = 122 Ay = ATy (3)
2T = T(FTF)-ET ; F = (£(x9) 000, 2(x )T
T
Y = (Y1,000,Yn)

is used. But what is to do if, for fixed X5 only vague obser-
~

vations Yi are available? For example, a meteorological station

evaluates the clouding ’f for a given atmospheric pressure x

by expressions like: without clouds, clear, weakly clouded,

cloudy, strongly clouded, clouded over. If the vague observations

are modelled by fuzzy numbers then the estimator n% °f"7, should

also be a fuzzy number, A straightforward approach would be to
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take the extended LSE

7oAy @ OLT, =@LE, 5 1T = oTEH " (4)
where (3) stands for the well-known addition of fuzzy numbers
(see, e.g., DUBOIS/PRADE /2/).
In the classical linear regression theory, as the most famous
result, the LSE is the best linear unbiased estimator (BLUE)
of 7. The aim of this paper is to develop a linear estimation
theory for linear regression if random fuzzy~-set-valued data
are available., Especially proposals for definition of expectation
and variance of random fuzzy sets are discussed and applied to
random fuzzy numbers with stochastically 1hdependent random
centre and random width (see section 3). In section 4, for a
well-defined regression model the BLUE is characterized. The
BLUE, in general, does not coincide with the extended LSE (4).
Only in special cases the extended LSE can be taken as approxi-
mately BLUE,

29 Prelimineries

Let Rd be the d-dimensional Euklidean space. To develop a linear
estimation theory with fuzzy observations an addition and scalar
multiplication is needed. These operations immediately follow

from the extension principle which results in

:%@Bh)=££ZMf@ﬁﬂ.%WH 5

ml‘A(x) = mA(x/l) H 1"‘ 0
where m,, my denote the membership functions (abbr.: m.fis) of
the fuzzy sets (abbr.: f.s!s) A and B on RY. Note that for crisp
A and B (5) simplifies to the known MINKOWSKI-addition and to the

usual gcalar multiplication of crisp Sets, i.e,
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A@B = {x+ ¥y XEA, yeB}

) (6)
Aea z{lx: xeA}
Using the HAUSDORFF-distance between crisp sets A and B,
a(4,B) = max{sup inf | x~yl , sup inf [|x-y I (N

XcA yeB yEB x€A
PURI/RALESCU /7/ introduce a HAUSDORFF~distance between f.s!s

4, B by
1
I(4,B) = g a(4,,B,) de (8)

where A4 ,, B, denote the« -cuts of A and B, Thus, the (compact
support) fuzzy subsets F(Rd) on rd constitute a linear metric
space [F(Rd), @, T].

Especially we are interested in fuzzy numbers, i.e, normalized

convex f.s.'s on R1

which we will use to model vague observations
of the type "APPROXIMATELY m",., For simplicity we will use LR~
type fuzzy numbers with centre m, the left width f and the right

width ¥, abbreviated by

A= [m, ﬁ’x]LR (9)
Then (for details see DUBOIS/PRADE /2/) addition and scalar
multiplication simplifies drastically, With A = [m,, £,, ¥
B = [mg, Bp, ¥plyy it holds

A]LR’

A®B = [m+ my, By+ By, 43+ 45l 1
Aea = [Am,, 1B, 12l4,] o

(10)

To introduce random fuzzy sets (abbr, RFS's) we follow the
approach by PURI/RALESCU /7/.

Let (1,5, P) be a probability space and K(RY) the set of all

d

A fuzzy subsets A on R™ with upper semicontinuous, normalized

m.f.'s and with compact support, Then a mapping ?IJL—-) K(Rd)
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is called a RPS iff every «-cut ?; of § is a compact random

get (as defined, e.g., by MATHERON /5/).

In our context we are interested, roughly spoken, in theory and
inference on the first and second moment of RFS's.

~
At first we will consider the expectation of a RFS Y. With
(EY), = EY, _ (11)

(see PURI/RALESCU /7/) this definition is reduced to the expec-
tation of a (erisp) random set., It is somewhat surprising that
in the steandard theory of random sets (abbr, RS's) the expec-
tation EZ of a RS I is not defined (see e.g. MATHERON /5/).
Using results due to AUMANN /1/ on integrals of set-valued
functions, PURI/RALESCU /7/ define

EX = {E: ¢ a.s.A te 11 (&R,B,0) (12)

Assume that Jl is nonatomic. Then E= is a convex set (see
AUMANN /1/) and it holds EX = E co= , where co> stands for the

convex hull of = . Since

EE@,) ={B5:3e=, @5, ) = {E4: $=4,48,, €5, 5,65}
={Ef, + BS,: §4€T,, $,€65,0 = ES,@ET, (13)

and

EA+T= AET (14)
the expectation is a linear operator.
For the case of-a deterministic and nonconvex set A we have
EA = coA ¥ A, i.e, the "expectation" EA of a deterministic A
does not coincide with A, Thus, (12) is an unsuitable tool to

model the "mean value" of nonconvex random figures.
~ A
AS8.1: All RS's = and all RFS's Y are agsumed to be convex.

For convex RS's in R (random intervals) it holds, with some

conditions of measurability (see KRUSE/MEYER /4/)
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EZ = [E inf<, E sup=] . (15)

Now we return to RFS's. With the appropriate operations @ and *

~ ~
from (5) for convex Y, and Y, we have, too,

~ ~ ~ ~
BE(Y; @Y,) = EY, @®EY,

~ s (16)
EA*Y = A EY
Moreover, for a onedimensional RFS of LR-type, say
Y= [m, B,y yJpp (7
which is convex automaticelly, we have
~
This easily can be proven using (15) for every «-cut of ’1\{,.
Now let us discuss second moments of RFS's, especially the
varisnge. By
~ ~
(Var ¥), = Var ¥ (19)
the variance of a RFS is reduced, also, to the variance of
(crisp) RS's., There is a proposal by KRUSE /3/ to define
Var = analogously to (12), i.e.
VarZ = {Vargz feza.s,AgeLz(Jl,fy,P)} ’ (20)

but this definition has some disadvantages, at least in our
context, For instance, according to (20), a deterministic set A
has a set-valued variance, E.g, for an interval A = [—a,a]vwe
have: Var [-a,a] = [0, a2]. Thus, (20) measures not only the
variability generated by randomness but also, in some sense,
the size of the set. In the following we prefer a proposal by
STOYAN (private communication) where the variance of a RS = is
introduced as the (real-valued) expectation of the squared

distance of =~ from its expectation E=, i.e.

—

Ver = = E a°(Z, ET) . (21)
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According to (21), clearly, a deterministic convex set A 1eéds
to VarA = 0, Let us point out that, in our opinion, a well-
founded definition of expectation and variance of RS's from the
point of pure probability theory is missing up to now. Thus, (12)
and (21) only figure as more or less pragmatic proposals.
For a gpecial case which will be used in the followiﬁg section

we compute the variance of RS's.

Lemme 1:Let = =[X £A]be a random interval with random centre X
and random positive width A, both from Lz(&,f‘r,P) with variances

512[, BAE and the first absolute central moments Mxria X and A

are assumed to be stochastically independent. Then
Var = = 62 + G2 4 2 (22)
== % Fxi /s |

Proof: From (15) directly we have ET= [EX £ EA)., A straight-
forward consideration yields da(,EI) = |X-EX] + |A-EAl. Since
X and A are independent (22) follows directly from (21).

Remark 1: If A is not assumed to be positive we have to con-

sider = =[x ¥ )al].

Unfortunately, for two independent random intervals f1= [X1t A1J
and 32= [Xzi' A2] is Var( E1 @32) % Var 3'1 + Var 32, in some

more detail:

Var( =, @-):':2) Var [X1 + X, P (4, + AZ)J
2 2 2 2
= Gx.] + 6A1 + 612 + (;A2 +‘2/‘lx1+xal/AIA1+A21 (23)

For scelar multipliecation, however, it holds

0

Var 1*= = A% Var = . (24)
Returning to RFS's we define with T from (8)

Vvar Y = E 3(Y, EY) . (25)
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Lemms 2: Let Y be a RFS of LR-type with random centre Y, with

random width f =4 = A> 0 and with L=R, symbolically

~

Y= [y, Al (26)
Furthermore, Y and A are assumed to be independent. Then

1
~ 2 2 2 . -1

Var Y = 63 + 1565 + 2Ly gy 5 1 = (f) LM ae (27
Proof: Note that ?{; =[y % A1 V()] and (see the proof of
Lemma 1): E?{:( = [y 2 BAL V)]
a(¥,, BY)) = |v-EY) + |1-(@)]|A-EA)
I(Y, BY) = |Y-EY| + 1]A ~EA|
Now, (27) follows from (25) directlyll

Anslogously to (24) we have

~

Ver 1°Y = 12 Var Y (28)

4, Linear Regression
As sketched in the introduction we consider a regression problem
where for fixed (independent) variable x the observation result
is a RFS 'f(x). To model this situation we assume

Wx) = [¥(@, Al 5 Y@ = 2@+ (29)
with known (setup~) function f(x), unknown paremeter V¢R* and

with independent random variables ¢ and A>0 satisfying

EeE= 03 Vare = 6'5 ;s BEA= Ao ; VarA= Gf . (30)

Applying (18) and Lemma 2 we have
B(x) = [0, AT, | o 1)
~ 1 |
2 .2 2 e (Y-
Var ¥(x) = &7 + 1° 6 + 2l g5 1 = g L=V ()] ae  (32)

Por estimation of a linear functional n = cTJ (see (2)) we ob-
gerve Y(x) stochastically independently at n points x‘l”"’xn’

i.e.
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V(xg) =2 ¥y = [v,, 4] 15 ¥y = #(x)T + £ 5 1=1,...,n (33)

We will consider only linear estimators for'z, i.e.

=@ ... @'Ani'n a@xi?r'i ; 2 €R! (34)
With (10), (16) and (18) it holds
A n n ]
7 = [fE I S Ea”i' 4;14 (35)
A n m n .
= [Z ™, 8 2inl ]y (36)

A ,
An estimator*n is called unbiased iff the centre of the fuzzy
expectation (36) coincides with the unknown n= 010', i.e., iff

e} T ,

i; lif(xi) = F R = C . (37)
Our aim is to find the BLUE for %, With Lemma?2 and the assumed
independence of the observations we obtain

Verdy = 62, 4122

S15€4 1404, * BMER 6111240 4y

i}

T 2 2 .
W6 + 1% 67] + 2y g egMizinglag = T A (38)

Thus, we have proved

. L4 o~
Theorem 1: The BLUE 7" for m = c¢'v is given by 7 =()7; ¥,
¥
where A = (l:,...,R:JT is the solution of f(A) = inf w,r.t.
the side condition FIA = c.

Due to the dependence from absolute moments, which do not
follow a simple law by addition of random variables, the func-
tional ¥(A),which is to be minimized, is highly complicated.
Thus, our linear estimation theory does not share the elegancy
known from classical regression case, |
In the following we will show that the extended LSE (4) appears
as an approximete solution in a special case. We suppress, how-
ever, all quantitative terms and present omly qualitative argu-

ments.
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ASS,2: £ and A are Gaussian variables.

Since A can be negative now we really have to work with |A| (see
Remark 1). We assume, however, that A only with a small proba-
bility is negative (e.g. if AOB BG'A ). Thus, qualitatively |

we have A~I|A|, For ?fl(x) from (29) then it holds approximately

N o2 2 .2
Var Y(x)Nsi +1 (;A + 416£ GA./T‘“ . (39)

This follows from (32) and the fact that with ASS,2
—
Mg, = Y/ GE S Mps J2/7 €, . (40)

n .

Since Zliﬁi and illil Ai are Gaussian variables we obtain,
i=1 i=1

analogously to (40)

T
Mizage =T2hCiye =7122%/1 6,
- PRy
MZingl Ayl “7%5’2411; s, "T2ANTE,

Thus, for'/;l from (34) the variance (38) reduces (approximately)
to
A . ~
Var m &« A" Var ¥Y(x) . (41)

Minimization of (41) w.r.t. (37), i.e.
AT/\ =min ; P = ¢ (42)

leads to the well-known LSE-coefficient vector ;, in (4), Thus,
the extended LSE (4) appears as approximately BLUE for n = ch?
if ASS.2 and A~IA[are satisfied, In general, however, the ex-
tended LSE is not BLUE (in the sense of Theorem 1) in an esti-
mation theory of second order for the considered regression
problem,

A simple example for the extended LSE and further remarks on
minimum width unbiased linear estimators for 1Z can be found in
NATHER/ALBRECHT /6/.
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