EVERY BOUNDED SUBSET OF THE METRIC SPACE (Eⁿ,D) IS RELATIVELY COMPACT

L.Gergó

Computer Center of Eötvös Loránd University H-1502, Budapest112, Pf157, Hungary

Keywords Fuzzy numbers, Hausdorff metric, Relatively compact set

1. Introduction

Denote E^n the set of strictly normal, fuzzy convex, upper semicontinuous, concave and compactly supported fuzzy numbers. Then (E^n,D) is a complete metric space with the metric D generated by the Hausdorff metric in $P_K(R^n)$ (see [1]), where $P_K(R^n)$ denotes the set of all nonempty, compact, convex subsets of R^n . We will prove that every bounded subset $K \subset E^n$ is relatively compact in (E^n,D) .

2.Preliminaries

First we will give some definitions.

<u>Definition2.1</u> Let (X,ρ) metric space. $K\subset X$ is bounded if there exists a number $M<+\infty$ such that $\rho(x,y)\leq M$ for each $x,y\in K$.

<u>Definition 2.2</u> Let X real linear space and let KCX. Then K is convex if $\alpha x + (1-\alpha)y \in K$ whenever $x,y \in K$ and $0 \le \alpha \le 1$.

<u>Definition2.3</u> Let (X, ρ) be metric space. Then $K \subset X$ is said to be relatively compact if every sequence in K has a subsequence that converges to a point in X.

We use the following notations (see in [1]).

Denote Eⁿ the set of all strictly normal(i.e. there exists only

one $t_0 \in \mathbb{R}^n$ such that $\tilde{x}(t_0) = 1$), fuzzy convex, upper

semicontinuous, concave and compactly supported fuzzy numbers $\tilde{\boldsymbol{x}}$ in \boldsymbol{R}^n .

Let a function D be given as below.

$$D(\tilde{x}, \tilde{y}) = \sup_{\alpha \in I} d([\tilde{x}]^{\alpha}, [\tilde{y}]^{\alpha})$$

where I denotes the closed intervall [0,1], d is the Hausdorff metric in $P_{K}(\mathbb{R}^{n})$,

$$[\tilde{\mathbf{x}}]^{\alpha} = \{ \mathbf{t} \in \mathbf{R} \mid \tilde{\mathbf{x}}(\mathbf{t}) \ge \alpha \}$$
 for $0 \le \alpha \le 1$,

 $[\tilde{x}]^{\circ} = c1\{ t \in \mathbb{R} \mid \tilde{x}(t) > 0 \}$ the support of \tilde{x} , where cl(A) denotes the closure of the set A.

Then (E^n, D) is a complete metric space.

 $\underline{\text{Definition2.3}} \ \ \text{The sequence} \ \ \{\tilde{x}_k^{}\}{\subset} E^n \ \ \text{converges to an } \tilde{x}_o{\in} E^n \ \ \text{if}$

$$D(\tilde{x}_k, \tilde{x}_0) \rightarrow 0$$
 as $k \rightarrow \infty$

 $\underline{\text{Definition2.4}} \text{ The sequence } \{\tilde{\mathbf{x}}_k\} \subset \mathbf{E^n} \text{ converges to an } \tilde{\mathbf{x}}_o \in \mathbf{E^n}$ levelwise if

$$d([\tilde{x}_k]^{\alpha},[\tilde{x}_0]^{\alpha}) \rightarrow 0 \quad \text{as } k \rightarrow \infty \quad \text{for all } 0 {<} \alpha {\leq} 1$$

In the sequel we need the following theorems.

 $\underline{\text{Theorem2.1}}$ Convergence and levelwise convergence are equivalent in the metric space (E^n,D) .

For proof see [2].

Theorem2.2 If { A^{α} | $\alpha{\in}I$ } is a family of subsets of R^n satisfying (i) - (iii) ,where

- (i) $A^{\alpha} \in P_{K}(R^{n})$ for all $\alpha \in I$
- (ii) $A^{\alpha} \subset A^{\beta}$ for all $\alpha, \beta \in I, \alpha \geq \beta$
- (iii) if $\{\alpha_k^{}\}$ is a nondecreasing sequence converging to α

then

$$A^{\alpha} = \bigcap_{k \ge 1} A^{\alpha_k}$$

then there exists an $\tilde{x}{\in}E^{\mathbf{n}}$ such that

$$[\tilde{x}]^{\alpha} = A^{\alpha}$$
 for $0 < \alpha \le 1$ and

$$[\tilde{x}]^{O} = supp(\tilde{x}) \subset A^{O}$$

For proof see[4].

We define addition and scalar multiplication in $\mathbf{E}^{\mathbf{n}}$ according to Zadéh's extension principle. Then the metric D is translation invariant and positively homogenous (see [1]), consequently

$$\|\tilde{\mathbf{x}}\| = D(\tilde{\mathbf{x}}, \hat{\mathbf{0}})$$
 forms a norm in $\mathbf{E}^{\mathbf{n}}$.

3. The main theorem

Theorem3.1 Every bounded subset K in $(\mathbf{E^n},\mathbf{D})$ is relatively compact that is for every sequence $\{\tilde{\mathbf{x}}_n\}\subset K$ there exists a subsequence $\{\tilde{\mathbf{x}}_k\}$ of $\{\tilde{\mathbf{x}}_k\}$ such that

$$\hat{x}_{y_k}$$
 converges to an $\tilde{x} \in E^{\tilde{n}}$.

Proof

Let us consider a sequence $\{\tilde{x}_k\}\subset K$. Then from the boundedness of K 2 $D(\tilde{x}_k,0)\leq M<\infty$ for each $n\in N$. Consequently for all $k\in N$ and $\alpha\in I$ the nonempty compact, convex subsets $A_k^\alpha=[\tilde{x}_k]^\alpha$ are in a ball of R^n . Using the theorem Blashke (Theorem 14.5 in [3]) we have that for each $\alpha\in I$ there exists a

subsequence ν_k and $A^{\alpha} \in P_K(\mathbf{R}^n)$ such that

$$A^{\alpha}_{\nu_k} \rightarrow A^{\alpha} \text{ as } k \rightarrow \infty$$

<u>Lemma3.1</u> Let us consider the family of subsets { A^{α} | $\alpha \in I$ } in Theorem3.1.Then the followings are valid.

$$(1) \quad A^{\alpha} \in P_{K}(\mathbb{R}^{n})$$

$$(2) \quad A^{\alpha} = \bigcap_{k \geq 1} c1 \{ \bigcup_{m \geq k} A^{\alpha}_{\nu_m} \} \qquad \alpha \in I$$

(3)
$$A^{\alpha} \subset A^{\beta}$$
 for $\beta \leq \alpha$

(4) For
$$\alpha_k \uparrow \alpha > 0$$

$$A^{\alpha} = \bigcap_{k \ge 1} A^{\alpha}_{k}$$

Proof of the lemma3.1

- (1) and (2) can be found in [3].
- (3) From the Theorem2.1 in [1] we know that

$$A^{\alpha}_{\nu_{m}} \subset A^{\beta}_{\nu_{m}}$$
 for $\beta \le \alpha$ consequently

$$\underset{m \geq k}{ \cup} \ A^{\alpha}_{\nu_m} \subset \underset{m \geq k}{ \cup} \ A^{\beta}_{\nu_m} \quad \text{for each $k \in N$} \qquad \text{so}$$

$$A^{\alpha} \subset A^{\beta}$$
.

(4) Let us consider a sequence α_k such that $\alpha_k \uparrow \alpha > 0$. From the Theorem2.1 in [1] we have

$$A_{\nu m}^{\alpha k} \subset A_{\nu m}^{\alpha}$$
 for all k∈N consequently

$$A^{\alpha_k}\subset A^{\alpha}$$
 for all k∈N. That is
$$\bigcap_{k\geq 1} A^{\alpha_k}\supset A^{\alpha_r}.$$

Conversely

That is $A^{\alpha} \subset \bigcap_{k \geq 1} A^{\alpha_k}$.

The proof of the lemma is ended. Now applying the Theorem2.2 and Theorem2.1 we can state that there exists an $\tilde{x}_0 \in E^n$ such that

$$[\tilde{x}_o]^{\alpha} = A^{\alpha} \qquad \alpha \in (0,1]$$

$$[\tilde{x}_o]^{\circ} \subset A^{\circ} \qquad \text{and}$$

$$\tilde{x}_{\nu_k} \to \tilde{x}_o \quad \text{in } (E^n,D).$$

The proof of the Theorem3.1 is ended.

<u>Corrolary3.1</u> If K,FCEⁿ are nonempty sets such that K is compact and F is closed in (E^n,D) then there exist $\tilde{x}_0 \in K$ and $\tilde{y}_0 \in F$ such that

$$\begin{array}{lll} D(\tilde{x}_{O}, \tilde{y}_{O}) &=& D(K, F) &=& \inf & D(\tilde{x}, \tilde{y}) \\ & & \tilde{x} \in K, \tilde{y} \in F \end{array}$$

Corrolary3.2 If $F \subset E^n$ closed nonempty set then there exists $\tilde{x}_o \in F$ such that

$$\|\tilde{\mathbf{x}}_{\mathbf{0}}\| = \inf \|\tilde{\mathbf{x}}\|$$

 $\tilde{\mathbf{x}} \in \mathbf{F}$

References

- [1] O.Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987) (301-317)
- [2] O.Kaleva, On the convergence of fuzzy sets, Fuzzy Sets and Systems 17 (1985) (53-65)
- [3] K.Leichtweiβ, Konvex mengen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980
- [4] C.V.Negoita and D.A.Ralescu, Application of Fuzzy Sets to System Analysis (Wiley, New York, 1975)