ON THE DEGREE OF FUZZINESS OF A FUZZY SET

Eugene Roventa

Department of Computer Science, Glendon College, York University
2275 Bayview Ave. Toronto, Ont. M4N 3M6

Canada

ABSTRACT: The purpose of this paper is to study the notion of transom fuzzy indefinite integral on the σ -algebra $\widetilde{A}(X,\beta)$, of fuzzy measurable subsets of a given space X. The probability of a fuzzy event \widetilde{A} , defined by a Lebesque-Stieltjes integral introduced in [1] is obtained as a particular case (Remark 3). These measures are used to distinguish fuzzy sets which have the same fuzzy degree (Definition 4). Thus we introduce two parameters for characterizing the fuzziness of a fuzzy set. For fundamental notions concerning measure and integration theory see [2], and for terminology connected to measures on fuzzy sets see [3] and [4].

KEYWORDS: fuzzy sets, transom, support, measure of fuzziness, measure theory.

INTRODUCTION: If X is an arbitrary set and \widetilde{F} c $\widetilde{1}$ is a fixed fuzzy set then we shall call transom (or esssential part) of the fuzzy set \widetilde{F} , the set (in the usual sense) $T(\widetilde{F}) = \{x \in X \mid 0 < \widetilde{F}(x) < 1\}$ where $\widetilde{F} \in [0,1]^X$. The properties of the function $\widetilde{F} \mapsto T(\widetilde{F})$ are studied in [4]. In [3] there are also introduced the usual sets: $S(\widetilde{F}) = \{x \in X \mid \widetilde{F}(x) > 0\}$, $Z(\widetilde{F}) = \{x \in X \mid \widetilde{F}(x) = 0\}$ and $H(\widetilde{F}) = \{x \in X \mid \widetilde{F}(x) = 1\}$.

Let (X,β,μ) be a measure space where β is a σ -algebra and $\mu:\beta\to lR_+$ is a positive finite measure. We consider further the σ -algebra $\mathcal{H}(X,\beta)$ of the fuzzy measurable sets from X and a β -measurable function $f:X\to R$. In [3] we studied the transom measure associated to μ as the function $m_T:\mathcal{H}(X,\beta)\to lR_+$ defined by:

$$m_{T}(\widetilde{F}) = \mu(T(\widetilde{F})).$$

DEFINITION 1. We call transom fuzzy indefinite integral of f, corresponding to the usual measure μ , the function $I_f \colon \widetilde{\mathcal{M}}(X,\beta) \to \mathbb{R}$ defined by: $I_f(\widetilde{F}) = \int f\widetilde{F}T(\widetilde{F}) d\mu.$

DEFINITION 2.[6]We call support fuzzy indefinite integral of f, corresponding to the usual measure μ the function $\widetilde{I}_f: \widehat{\mathcal{M}}(X,\beta) \to \mathbb{R}$ defined by: $\widetilde{I}_f(\widetilde{F}) = \int f\widetilde{F} d\mu.$

REMARK 1. If \widetilde{F} is an usual set, then $T(\widetilde{F}) = \phi$ hence $I_f(\widetilde{F}) = 0$ and $I_f(\widetilde{F})$ is the usual indefinite integral. If f = 1, we shall denote:

$$I_{\bullet}(\widetilde{F}) = \int \widetilde{F}T(\widetilde{F})d\mu = \int \widetilde{F}d\mu$$

$$T(\widetilde{F})$$

$$I_{\bullet}(\widetilde{F}) = \int \widetilde{F}d\mu = \int \widetilde{F}d\mu .$$

$$S(\widetilde{F})$$

<u>DEFINITION</u> 3. If $\widetilde{F}_1, \widetilde{F}_2 \in \widetilde{\mathcal{M}}(X, \beta)$ we shall designate $\widetilde{F}_1 \sim \widetilde{F}_2 \Leftrightarrow m_T(\widetilde{F}_1) = m_T(\widetilde{F}_2)$ where m_T is the transom measure generated by μ [3]. Obviously "~" is an equivalence relation. We shall denote the corresponding quotient set with \mathfrak{C}_T .

 $\underline{\text{DEFINITION}}$ 4. We call fuzzy degree any equivalence class from \mathcal{E}_T .

REMARK 2. The transom measure $m_T: \mathcal{A}(X,\beta) \to i\mathbb{R}$ studied in [3] characterizes the fuzzy degree of a fuzzy set and it is the same for all the fuzzy sets whose transom have the same measure. Using the function I_1 we can distinguish the fuzzy sets which have the same fuzzy degree.

REMARK 3. If $\mu(X)=1$ and if the integral is the Lebesque-Stieltjes integral, then \vec{I}_1 coincides whith the probability of a fuzzy event introduced in [1].

PROPOSITION 1. The following inequalities hold:

$$\begin{array}{l} {\rm I}_{1}(\widetilde{\mathsf{F}}) \; < \; \mathsf{m}_{T} \; \; (\widetilde{\mathsf{F}}) \\ \widetilde{\rm I}_{1}(\widetilde{\mathsf{F}}) \; < \; \mathsf{m}_{_{\rm S}} \; \; (\widetilde{\mathsf{F}}) \end{array}$$

where $m_S = \mu (S(F))$ [3].

The assertion follows from the fact that F(x) < 1, for every $x \in X$.

PROPOSITION 2. The following relation holds:

$$\overline{I}_1$$
 $(F) = I_1$ $(F) + \mu[H(F)].$

It results from: $S(\widetilde{F}) = T(\widetilde{F}) \cup H(\widetilde{F})$.

we have $V(\widetilde{F}) + V(\widetilde{F}) = 1$ whatever would be $\widetilde{F} \in \widetilde{\mathcal{M}}(X,\beta)$ with $\widetilde{I}_1(\widetilde{F}) \neq 0$. If V is small for a certain fuzzy degree, \widetilde{F} is "almost usual set" and when W is small for a certain fuzzy degree, then \widetilde{F} is an "almost proper fuzzy set". **DEFINITION** 5 [2] We say that the β -measurable function $f:X \to R$ $(f=f^+-f^-)$ has an integral related the positive measure μ if at least one of the function f^+, f^- is integrable that is either $\int f^+ d\mu < \infty$ or $\int f^- d\mu < \infty$.

THEOREM 1. If f has an integral with respect to the measure μ , then the transom fuzzy indefinite integral of f (resp. the support fuzzy indefinite integral of f) is a signed measure on $\widetilde{\mathcal{A}}(X,\beta)$.

Proof. Because $f = f^+ - f^-$ it is sufficient to consider the case $f \ge 0$. Let $\widetilde{F} = \bigcup_{k=1}^{\infty} \widetilde{F}_k$, $\widetilde{F}_k \cap \widetilde{F}_k' = \widetilde{o}$, $k \ne k'$, $\widetilde{F}_k \in \widetilde{\mathcal{M}}(X,B)$. It is clear $\left(T(\widetilde{F}_k) \cap T(\widetilde{F}_{k'}) = \phi\right)$ that $\widetilde{F}(x) = \sum_{k=1}^{\infty} \widetilde{F}_k(x)$ and $T(\widetilde{F})(x) = \sum_{k=1}^{\infty} T(\widetilde{F}_k)(x)$ where $T(\widetilde{F})(x) = 1$ if $x \in T(\widetilde{F})$ and $T(\widetilde{F})(x) = 0$ otherwise. One can observe that whichever would be $x \in X$ there is an unique $k \circ S$ such that $\widetilde{F}_k(x) \ne 0$ (resp. $T(\widetilde{F}_k)(x) \ne 0$). Hence $\widetilde{F}(x)T(\widetilde{F})(x) = \sum_{k=1}^{\infty} \widetilde{F}(x)T(\widetilde{F}_k)(x)$ holds for $x \in X$. Multiplying the above relation with $f \ge 0$ and integrating we get $T_{f}(\bigcup_{k=1}^{\infty} \widetilde{F}_k) = \sum_{k=1}^{\infty} T_{f}(\widetilde{F}_k)$. For the fuzzy indefinite integral the proof is analogous and use the support instead of the transom.

REMARK 5. If $f \ge 0$ then both I_f and I_f are nonegative measures. Of course this remark is valid for I_1 resp. I_1 . But I_1 (unlike I_1) is neither monotonic nor subtractive (this is a consequence of the fact that for an arbitrary fuzzy set \widetilde{A} does not hold $\widetilde{A} \cap \widehat{C}\widetilde{A} = \emptyset$). The next theorem is a generalisation of the countable additivity of the transom fuzzy indefinite integral.

THEOREM 2. If f has an integral with respect to the measure μ then for each sequence $\{\widetilde{F}_k\}_{k\in\mathbb{N}}$ the following equalities hold:

- (i) $I_{f(\bigcup_{k=1}^{\infty}\widetilde{F}_{k})=\sum_{k=1}^{\infty}I_{f}(\widetilde{F}_{k})}^{\infty}$ whenever $H(\bigcup_{k=1}^{\infty}\widetilde{F}_{k})\subseteq\bigcap_{k=1}^{\infty}H(\widetilde{F}_{k})$ and $m_{T}(\widetilde{F}_{k}\cap\widetilde{F}_{k})=0, k\neq k'$.
- (ii) $\overline{I}_{f}(\bigcup_{k=1}^{\infty} \widetilde{F}_{k}) = \sum_{k=1}^{\infty} \overline{I}_{f}(\widetilde{F}_{k})$ if $m_{S}(\widehat{F}_{k} \cap \widehat{F}_{k}) = 0$, $k \neq k'$.

Proof (i) If we designate $\widetilde{F} = \bigcup_{k=1}^{\infty} \widetilde{F}_k$, then $H(\bigcup_{k=1}^{\infty} \widetilde{F}_k) \subseteq \bigcap_{k=1}^{\infty} H(\widetilde{F}_k)$ implies: $T(\bigcup_{k=1}^{\infty} \widetilde{F}_k) = \bigcup_{k=1}^{\infty} T(\widetilde{F}_k)$. Hence we can write: $T(\widetilde{F}) = A_1 \cup A_2 \cup \ldots \cup A_k \cup \ldots$, $A_k \cap A_k' = \emptyset$, (for $k \neq k$) where $A_1 = T(\widetilde{F}_1)$, $A_k = T(\widetilde{F}_k) \cup \bigcup_{k=1}^{\infty} [T(\widetilde{F}_k) \cap T(\widetilde{F}_n)]$. We take by definition $\widetilde{E}_k = \widetilde{F}_k \cap A_k \in \widetilde{A}(X,\beta)$ and one can observe that $T(\widetilde{E}_k) = A_k$. Therefore: $T(\widetilde{F}) = \bigcup_{k=1}^{\infty} T(\widetilde{E}_k)$ with $T(\widetilde{E}_k) \cap T(\widetilde{E}_k') = \emptyset$ ($k \neq k'$). By hypothesis we have $H(\widetilde{F}_1) = H(\widetilde{F}_1)$, $i \neq j$ hence $0 = m_T(\widetilde{F}_k \cap \widetilde{F}_k') = \mu[T(\widetilde{F}_k \cap \widetilde{F}_k')] = \mu[T(\widetilde{F}_k) \cap T(\widetilde{F}_k')]$. But $T(\widetilde{E}_k) = T(\widetilde{F}_k) \cup \bigcup_{k=1}^{\infty} [T(\widetilde{F}_k) \cap T(\widetilde{F}_n)]$ therefore $m_T(\widetilde{E}_k) = m_T(\widetilde{F}_k)$ wherefrom $f(\widetilde{F}_k) = f(\widetilde{F}_k) \cap T(\widetilde{F}_k) \cap T(\widetilde{F}_k)$ if $f(\widetilde{F}_k) = f(\widetilde{F}_k) \cap T(\widetilde{F}_k)$.

For $\overline{\mathbf{I}}_f$ one can judge in an analogous manner using $S(\widetilde{\mathbf{F}})$.

THEOREM 3. If the function f has an integral related to μ then for every increasing sequence $\{\widetilde{F}_k\}_{k \in \mathbb{N}}$ of fuzzy sets from $\widetilde{A}(X,\beta)$ with $\widetilde{F}_k \nearrow \widetilde{F}$, the following inequalities hold:

- (i) $I_f(\widetilde{F}) = \lim_{k \to \infty} I_f(\widehat{F}_k)$ if $H(\widetilde{F}_k) = H(\widehat{F})$, $k \in \mathbb{N}$
- (ii) $\tilde{I}_f(\tilde{F}) = \lim_{k \to \infty} \tilde{I}_f(\tilde{F}_k)$.

Proof (i) If $\widetilde{F}_k \nearrow \widetilde{F}$ and if $H(\widetilde{F}_k) = H(\widetilde{F})$, keN, we have $T(\widetilde{F}_k) \nearrow T(\widetilde{F})$, hence $T(\widetilde{F}) = \bigcup_{k=1}^{\infty} T(\widetilde{F}_k) = T(\widetilde{F}_1) \cup [T(\widetilde{F}_2) \setminus T(\widetilde{F}_1)] \cup \ldots \cup [T(\widetilde{F}_n) \setminus T(\widetilde{F}_{n-1})] \cup \ldots$ If we put by definition $\widetilde{F}_0 = \widetilde{O}$, we get:

$$I_{f}(\widetilde{F}) = \int f\widetilde{F}d\mu = \sum_{n=1}^{\infty} \int f\widetilde{F}d\mu = \lim_{n=1}^{\infty} \sum_{T(\widetilde{F}_{n})-T(\widetilde{F}_{n-1})} \lim_{k \to \infty} \sum_{n=1}^{k} \int f\widetilde{F}d\mu = \lim_{T(\widetilde{F}_{n})-T(\widetilde{F}_{n-1})} \lim_{k \to \infty} \int f\widetilde{F}d\mu = \lim_{T(\widetilde{F}_{n})-T(\widetilde{F}_{n-1})} \lim_{K(\widetilde{F}_{n})-T(\widetilde{F}_{n-1})} \lim_{K(\widetilde{F}_{n})-T(\widetilde{F}_{n-1})} \lim_{K(\widetilde{F$$

(ii) can be proved in an analogous manner by replacing in the above proof the transom by the support.

THEOREM 4. I_1 is a complete measure on $\mathcal{M}(X,\beta)$ iff μ is a complete measure on β .

Proof We suppose that $\overline{I}_1(\widetilde{F})=0$. Because $\widetilde{F}(x)>0$ if $x \in S(\widetilde{F})$ we get $\mu[S(\widetilde{F})]=0$. Let us consider $\widetilde{E} \subseteq \widetilde{F}$; then $S(\widetilde{E}) \subseteq S(\widetilde{F})$. But μ is assumed to be complete, hence $S(\widetilde{E}) \in \beta$ and $\mu[S(\widetilde{E})]=0$. If we consider $E_{\alpha}=\{x \mid \widetilde{F}(x) \le \alpha\}$ (for $\alpha \in [0,1]$) then $E_{\alpha} \subseteq S(\widetilde{E})$ and we get (from the completness of μ) that $E_{\alpha} \in \beta$ ($\alpha \in (0,1]$). Further the set $E_0=\{x \mid \widetilde{E}(x)=0\}=X \setminus S(\widetilde{E})$, hence $E_0 \in \beta$. Therefore $E_{\alpha} \in \beta$ whichever would $\alpha \in [0,1]$ be. But this means, by definition that $\widetilde{E} \in A(X,\beta)$. The converse implication follows since \widetilde{I}_1 is an extension of μ .

REMARK 6. The completness of the measure I_1 would imply $\mathcal{M}(X,\beta)=[0,1]^X$ (this is so because we have $I_1(\tilde{\mathbf{1}})=0$).

<u>DEFINITION</u> 6. Let m,n be two signed finite measures given on $A(X,\beta)$. We shall say that m is absolutely continous with respect to the measure n, if for every $\epsilon > 0$, there is a $\delta > 0$, such that: $\widetilde{E} \subseteq \widehat{\mathbf{1}}$, $\widetilde{n}(\widetilde{E}) < \delta$ imply $|m(\widetilde{E})| < \epsilon$.

REMARK 7. \overline{n} is the total variation of n, which in the case $n \ge 0$ coincides with n (on $\widehat{A}(X,\beta)$).

REMARK 8. If μ is positive and finite on β , then, I_1 and I_1 are positive and finite measures on $\widehat{\mathcal{M}}(X,\beta)$.

THEOREM 5. If $f:X\to\mathbb{R}$ is integrable, then I_f (resp. I_f) is absolutely continous with respect to I_1 (resp. I_1).

Proof We will take first $f \ge 0$. There is a sequence $\{f_n\}_{n \in \mathbb{N}}$ of simple functions, with $f_n \le n$, such that:

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu < \infty.$$

For $\varepsilon>0$, there is $n\circ \varepsilon N$ such that for $n\geq n\circ \varepsilon$

$$\int f d\mu - \int f_n d\mu < \epsilon/2$$
.

Let us consider the difference:

$$I_{\mathbf{f}}(\widetilde{\mathbf{E}}) - I_{\mathbf{f}}(\widetilde{\mathbf{E}}) = I_{\mathbf{f}-\mathbf{f}}(\widetilde{\mathbf{E}}) = \int (\mathbf{f}-\mathbf{f}_n)\widetilde{\mathbf{E}}\mathbf{T}(\widetilde{\mathbf{E}})d\mu \leq \int (\mathbf{f}-\mathbf{f}_n)d\mu \leq \varepsilon/2 \text{ (for } n \geq n_0).$$

Hence:

$$I_{f}(\tilde{E}) < I_{f}(\tilde{E}) + \varepsilon/2$$
.

But:

$$I_{f_{n\circ}}(\widetilde{E}) = \int f_{n\circ}\widetilde{E}T(\widetilde{E})d\mu \le n\circ \int \widetilde{E}d\mu = n\circ I_{1}(\widetilde{E}).$$

Let $\widetilde{E} \in \widetilde{\mathcal{M}}(X,\beta)$ such that $I_1(\widetilde{E}) < \varepsilon/2n_0$; then we get: $I_f(\widetilde{E}) < \varepsilon$.

If f is arbitrary (i.e. does not keep the same sign) integrable function, we consider f^+, f^- and because $|f| = f^+ + f^-$ we deduce that |f| is also integrable. Further we apply the well known inequality $|\int f d\mu| \le \int |f| d\mu$. For \overline{I}_f we judge analogously.

REMARK 9 I_f (resp. \overline{I}_f) is absolutely continuous with respect to m_T (resp. m_S), because $I_1(\widetilde{E}) \leq m_T(\widetilde{E})$ (resp. $\overline{I}_1(\widetilde{E}) \leq m_S(\widetilde{E})$).

REFERENCES

- 1. Zadeh, L.A., Probability Measure of Fuzzy Events, J. Math. Anal.

 Appl. 23, 1968.
- 2. Halmos, P.R., <u>Measure Theory</u>, Van Nostrand Reinhold Company, New-York, 1964.
- Roventa, E., A propos des A-mesures tronçon et support, <u>BUCEFAL</u>
 (L.S.I. Univ. P. Sabatier, Toulouse) no 19, 42-48, 1984.
- Roventa, E., Some Problems Concerning Topological Structures and Measures Theory for Fuzzy Sets and Applications, Ph.D. Thesis, Timisoara University, Romania, 1979. (Romanian)
- 5. Negoita, C.V., Ralescu, D.A., Simulation, Knowledge-based Computing, and Fuzzy Statistics, Van Nostrand Reinhold Company, New York, 1987.
- 6. Puri, M.L., Ralescu, D.A., Integration on Fuzzy Sets, Advances in Applied Mathematics 3, 430-434, 1982.

- 7. Dubois, D., Prade, H., Evaluation of Fuzzy Sets and Fuzzy Integration:
 A Synthetic Discussion; Second Joint IFSA EC and EURO WG Workshop,
 Vienna, April 6-8, 131-135, 1988.
- 8. Dubois, D., Prade, H., Theorie des possibilités, Masson, 1985.
- Sugeno, M., Theory of Fuzzy Integrals and its Applications, PhD.
 Thesis, Tokyo Institute of Technology, 1974.
- 10. Yager, R.R., A Note on Probabilities of Fuzzy Events, <u>Information</u>
 Sciences, 18, 113-129, 1979.