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ABSTRACT: The purpose of this paper is to study the notion of transom
fuzzy indefinite integral on the o-algebra dir(X,B), of fuzzy measurable
subsets of a given space X. The probability of a fuzzy event X} defined by
a Lebesque-Stieltjes integral introduced in [1] is obtained as a particular
case (Remark 3). These measures are used to distinguish fuzzy sets which
have the same fuzzy degree (Definition 4). Thus we introduce two
parameters for characterizing the fuzziness of a fuzzy set. For
fundamental notions concerning measure and integration theory see 2], and

for terminology connected to measures on fuzzy sets see [3] and [4].

KEYWORDS: fuzzy sets, transom, support, measure of fuzziness, measure
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~

INTRODUCTION: If X is an arbitrary set and F ¢ T is a fixed fuzzy set then

we shall call transom (or esssential part) of the fuzzy set F, the set (in
the usual sense) T(F) = [xeXIO(ﬁkx)<1} where E'e [O,I]X. The properties
of the funétion Fl» T(§5 are studied in [4]. 1In [3] there are also
introduced the usual sets: S(FS:{xeX[Ekx))O], Z(E}:{xexlﬁkx) =0} and

H(F)={xeX |F(x)=1}.
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Let (X,B,u) be a measure space where B is a o-algebra and p:g> IR, is a
positive finite measure. We consider further the o-algebra /QkX,B) of the
fuzzy measurable sets from X and a B-measurable function f:X»>R. 1In [8] we
studied the transom measure associated to w as the function mT:JQkX,B)9lR+

defined by:

np(F) = w(T(F)).

DEFINITION 1. We call transom fuzzy indefinite integral of f, correspon-

(.
ding to the usual measure u, the function If:/n(X,B)-*m.defined by:

1¢(F)=[fFT(F)du.

DEFINITION 2.[¢lWe call support fuzzy indefinite integral of f,

corresponding to the usual measure p the function flei(X,B)+lR defined by:

T¢(F)=fFau.

REMARK 1. If F is an usual set, then T(F) =¢ hence If(F) =0 and Ef(F) is
the usual indefinite integral. If f =1, we shall denote:

1, (F)= [FT(F)du = [Fau
T(F)

- ~ lad ~
I‘(F)= JFdu = JEdu .
S(F)
~ o~ > ~ ~
DEFINITION 3. If Fp,FpeM(X,B) wve shall designate F; ~Fy &
~ d .
mp(F1)=mp(Fy) vhere mp is the transom measure generated by u [3].
Obviously "~" is an equivalence relation. We shall denote the

corresponding quotient set with f&.

DEFINITION 4. Ve call fuzzy degree any equivalence class from &&.
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REMARK 2. The transom measure mT:J~(X,B)+IR studied in [3] characterizes
the fuzzy degree of a fuzzy set and it 1s the same for all the fuzzy sets

whose transom have the same measure. Using the function I we can

distinguish the fuzzy sets which have the same fuzzy degree.

REMARK 3. If p(X)=1 and if the integral is the Lebesque-Stieltjes

integral, then il coincides whith the probability of a fuzzy event

introduced in [1].

PROPOSITION 1. The following inequalities hold:

1.(F) < mp (F)
O Td <ng (B
where mg= u (S(F)) (3].

The assertion follows from the fact that F(x)< 1, for every xeX.

PROPOSITION 2. The following relation holds:
Iy (F) = I3 (F) + u[H()].

It results from: S(;) = T(?) v H(E).

REMARK 4. Denoting V(F)_ I1(F) and W(F)_ wlH(F)]
T1(F) I1(F)
we have V(g) + W(E} =1 whatever would be FE.“(X,B) with Ei(ﬁ):O.

. L4
If V is small for a certain fuzzy degree,F is "almost usual set" and when W

"
is small for a certain fuzzy degree then F is an "almost proper fuzzy set".
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DEFINITION 5]J2]VWe say that the B-measurable function f:X »|R (f=f*-f-) has
an integral related the positive measure u if at least one of the function

f*,f~ is integrable that is either [f*du< = or [f-du< =.

THEOREM 1. If f has an integral with respect to the measure u, then the
transom fuzzy indefinite integral of f (resp. the support fuzzy indefinite
integral of f) is a signed measure on ff(x,s).

Proof. Because f = f* -~ f~ it is sufficient to consider the case f2> O.
Let F:Q?k, Fi 0 Fy = o kek',Fref(x,B). It is clear(T(F) n T(F)=¢)
that F(x)= E"ﬁk(x) and T(F)(x) = E.T(;k)(x) where T(F)(x) =1 1if xeT(F) and
T(E}(x):O othervise. One can observe that whichever would be xe€X there is
an unique ko such that ;k£x)¢0 (resp. T(Fkb)(x)¢0). Hence ;(x)T(i)(x)=
=Ei;kx)T(;k)(x) holds for”xeX. M:}tiplying the abg;ﬁyrelation with £20
and integrating we get If(bLFk) =‘£'If(Fk). For thEVfG;zy indefinite

integral the proof is analogous and use the support instead of the transom.

REMARK 5. If f>0 then both I and.Ef are nonegative measures. Of course
this remark is valid for Iy resp.il. But I (unlike El) is neither
monotonic nor subtractive (this is a consequence of the fact that for an
arbitrary fuzzy set‘z does not hold K n eK = ¢). The next theorem is a

generalisation of the countable additivity of the transom fuzzy indefinite

integral.
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THEOREM 2. If f has an integral with respect to the measure u then for

~
each sequence {Fk]“N the following equalities hold:

2]

( 1) If(U Fk) r If(Fk) wvhenever H(U Fk)c n H(F“) and "‘T(Fk n Fk) =0,k#k’.
k=1 = k=1 k=1

(ii) Tg(U Fy)

=L Tg(Fy)  if mg(Fy 0 F)=0, k#k’.
k=1 k=

1

Proof (i) 1If we designate F— ng, then H(U Fk)C n H(Fk) implies: T(U'Fk)- .
=U,T(Fk). Hence we can write'n';‘('l;“) Al U :; U ..pllj Ap Uoooy A N Ak‘:m#,
(;;r k#K) where Aj=T(F1), Ay= T(Fk)sU [T(Fk)n T(F,)]. Ve take by

definition Ekzi;"k n Aken(x B) and one can observe that T(Ek)-Ak

Therefore: T(F)= U T(Ey) with T(Eg) n T(Eg)=¢ (k#k’). By hypothesis ve

have H(Fj)= H(Ej)r‘;¢3 hence 0- mp(F 0 Fi') = ulT(Fe 0 Fe/) 1= IT(F)N
nT(Fk')] But T(Ek) T(Fk)\U [T(Fk) n T(Fn)] therefore mT(EI()=mT(Fk) vhere -

from ffEpdu =fFdu and T¢(0 Fk)— z [£E) du= z[}fkdu— L T£(F).
T(Er) T(Fk) ke T(E) *“T(Fy) *~

For If one can judge in an analogous manner using S('FT).

THEOREM 3. If the function f has an integral related to u then for every

~ ~ ~ ~
increasing sequence {Fil emw of fuzzy sets from M(X,B) with FyAF, the
following inequalities hold :

(i) Ig(= lim Ig(F) if H(FR)= B(F), kel
koo

(i1) Ig(F)= lim Ig(Fy)
koo
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Proof (i) If Fy AF and if H(Fy)=H(F), keN, ve have T(Fy) .~ T(F), hence

T (F)= 0 T(Fp) = T(F1) U [T(Fp) \ T(FP] V... [T(FON T(Fy 1)1 V...
k=1

If we put by definition Fo = 0, we get:

8

~ - ~ k ~ ~
Ig(F)= [fFdu = L JEFdu = 1lim I JfFdu = lim [fFdp =
T(F)  n=1 T(F)-T(F,_1) ko n=1 T(F,)-T(Fy_1) ko= T(Fy)

= lim If (Fp)
ke ‘

(ii) can be proved in an analogous manner by replacing in the above proof

the transom by the support.

THEOREM 4. El is a complete measure on /K(X,B) iffu is a complete measure
on B.

Proof Ve suppose that El(ﬁs=0. Because ;(x)>0 if xeS(E} ve get u[S(£3]=0.
Let us consider Es%; then S(EBQS(F). But y is assumed to be complete,
hence S(E}es and u[S(E}] = 0. If we consider Ea={x|62x)5a} (for ag[0,1])
then EQQS(E) and ve get (from the completness of u) that E B (ae(O,l]).
Further the set Eo = {xlEkx): 0}=X\S(E), hence EoeB. Therefore E eB
whichever would «€[0,1] be. But this means, by definition that ESIGZX,B).

The converse implication follows since Ii is an extension of u.

~S
REMARK 6. The completness of the measure I would imply J“(X,B):[O,l]x

(this is so because we have Il(T)=0).

“~
DEFINITION 6. Let m,n be two signed finite measures given on J‘(X,B). Ve
shall say that m is absolutely continous with respect to the measure n, if

N - W ~
for every €0, there is a 8o, such that: Ec4, n(E)<§ imply |m(E)|<e.
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REMARK 7. n is the total variation of n, which in the case n)>0 coincides

with n (on M(X,B)).

REMARK 8. If p is positive and finite on B, then, I and fl are positive

and finite measures on Jn(X,B).

THEOREM 5. If f:X»> R is integrable, then If (resp.if) <8 absolutely
continous with respect to Ip (resp.il).
Proof Ve will take first £>0. There is a sequence {f,} ey Oof simple
functions, with £,<n, such that:

Jfdu = lim  [f du<=,

n-e

For €>0, there is noeN such that for nno:

ffdu - [f du < /2,

Let us consider the difference:

Tg(E) - Tg(E) = Tg_g (B) = J(E-£,)BT(E)dugf(f-f,)duge/2 (for ndne).
n n

Hence:

If(E)< I¢ (E) + /2
no

But:

If (E) = [f, ET(E)du ¢ nof Edu = nol(E) .
no ° T(E)

~ ~ ~ -~
Let EeM(X,B) such that I;(E)<e/2no; then we get: If(E) <e.
If f is arbitrary (i.e. does not keep the same sign) integrable function,

we consider f*,f~ and because |f|=f* + f~ we deduce that |f| is also

integrable. Further we apply the well known inequality | [fdu|< [|£]|du.

For If we judge analogously.
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REMARK 9 I (resp. Ig) is absolutely continuous with respect to mp (resp.

mg), because I3(E) < mp(E) (resp.I(E) < mg(E)).

1S
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