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1. Introduction

In Section 2 of this paper, the concepts of stratiformization
limi£ of fuzzy subsets of R and extended fuzzy number will be
introduced, which will play an important role in the discussion
on the newly-defined fuzzy integral. In Section 3, we will in-
troduce an integral, which assumes values in the class of fuzzy
subsets of R, defined on a fuzzy set and give some of its ele-
mentary properties. In Section 4, we will prove a series of con-
vergence theorems for the sequence aof fuzzy integrals. |

Throughout the paper, assume that X is a non-empty set and $
is a or-algebra of subsets of X, R=(-w , +o )}, and use Z%(X) to
denote the class of all fuzzy subsets of X. Let # be the fuzzy

measure [4) defined ong, T be index set. Furthermore, we make



the following conventions: sup{i: i€@}=0, oo -o0 =0, 0-W=0, and

L;.=0 when T is empty.

2. Stratiformization limit and extended fuzzy number

For convenience' sake, write hy={x: h(x)=>A}, where A€(0,1]),

hETKX) .
Definition 2.1. Let hy, haey('ﬁ), if (b9, A€E(0,1]), i=1,2,
write d)=inf(h)x; Yj=sup(h;)s. We call h,&h,(or hyxh) iff
there holds that (h,)a## implies (ha)A‘\m and aﬁsa“a, kf}éb’é for
any A€(0,1]). ‘

It is easy to see that < is a pre-order on ?('ﬁ). We call h,

and h., equivalent if both h14h2 and haéh] are valid, write as

2

h,~h Obviously, the relation ~ is an equivalent relation on

1 2°
FE®).
Let h € KR), n=1,2,.... If (b )r#f, A€(0,1], write ad=inf(hpy)a ;
Bﬁ:sup(hn)l. For all A€ [0,1]), if {hn} satisfies the following
condition (I) or (I):
. s A
(I) there exists n, such that (hn)a*¢ as n=n,, and both %ﬁ%,an
and lim b} exist.
n~oo ,
(I) there exists na such that (hp)x#f as nz=n,.
Then put
Hy(0)= [aﬂ,bxl if there exists mp such that (h )xz@ for
. A_LA . A_ A
every nz=n, and 111—%& ap=a" , %})Xg bp=b",
@ if there exists m, such that (hp)a=@ for
every n=np.
Definition 2.2. Let h € FKR), n=1,2,..., for every€(0,1], {h,}
satisfies condition (I) or (I). The fuzzy set determined by nest

of sets {Hl(ﬁ): A€ [0,1]} is called the stratiformization limit

of {hn}, denoted by (s)%},g hn’ where no danger of confusion ex-
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ists, we simply write hl’ }11-_—(5)']1__}'1311o h,, that is, the membership

function my (x) of hl' is defined as
1

mhl(x)‘M[ \/ {ANXy (z)(x)}
Definition 2.3. AG%(R) is called a extended fuzzy number, if m,
satisfies the following conditions: ”

(1) there exists X,€R such that mé(x,)ﬂ,

(2) A,is a closed interval for any 2r€(0,1] .

The set of all extended fuzzy numbers is denoted by ?’(ﬁ).
Definition 2.4. Let A€ %(ﬁ). A is .called a nonnegative extended
fuzzy number if mA(x)=O for all xe€[-00 ,0). |

The set of all ;onnegative extended fuzzy numbers is denoted
vy F(RY).

The following propositions can be easily obtained from the
above definitions.

Proposition 2.1. The relation < restricted to %" (R) is a par-
tial order. '
Proposition 2.2. Let h, € HR), n=1,2,..., and my (%)= { X=8n»
n 0 =xza,
If ]ﬁ_i;xgo ap exists, then
mhl(x)z{l x:rlli")rgo an,
0 xt%})rg’ ape

This shows that the stratiformization limit is a generaliza-
tion of classical limit.

Proposition 2.3. Let hne%*(ﬁ), n=1,2,¢+.5 and (hn)“z[a"l‘l, b:l],
®€[0,1) . If both lim ap and lim v exist for all ®€[0,1], then
(S)llm h 59} (R), and for any A€(0,1),

a«
[(s)llm h ), = Illm lim &f, lim lim oY) .

Proof. [(s)]ﬁ_i’l‘n”hn];\= O[%l.(m» af, lim b,

= ;_’L(%gl ]ﬁ}’xgo ah» llm lim bn]
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Proposition 2.4. Let hy, 1€ #(R) and hy<1, for every n. If both
(s)%_i’g(hn) and (s)lim(1l,) exist, then

(8)33g Pa=< (&) 533 In-

%, F-integral on fuzzy set

Let M'.—.-{f' f is a nonnegative, extended real-valued measurable

function on X}, sk={A: A€ P(X) and mAeM}
Definition 3.1. Let feM, A€éd. The F-lntegral of f over A is de-

fined as a fuzzy subset of R, denoted by (F)SAf dp, whose member-

ship function is defined as
sup{A: $A1f dpsxsgAaf du},

where IA f d4 is in sense of Sugeno, that is, §A7\f dp=

-

squp(Ahan) , Where Fy={x: f(x)=d}.
Proposition 3.1. Let fe€M, AﬁQ, then the F-lntegral of f over A

can be expressed as
(F)§,f du=, U ABOD,
where H(A)= [SA f dp., SA £ du]l, U 7\H(7\) is a fuzzy set whose
membership functlon is defined as: sUP{A-Xyy(¥)* A€o, 1]}
Proposition 3.2. Let A-A€fB, write fAf dd=y and (F)S f du=C, then
mQ(x)={1 X=Y,

X$Y.
This indicates that the above-introduced F-integral is a gener-

alization of that of Sugeno's.

Proposition 3.3%. Whenever f=g a.e. and my=mpy a.€., f,geM, A,EGA,

then (F) jAf dp=(F) ’Bg du, iff M 1is null—add;tive (43.

Proposition 3.4. Le; f,g€M, A,Bed. If f<g and ASB, then
(F)S £ dp ¥ (F)SBg du.

Proposition 3 5. Let feM, Ae&d, and write R={x: mA(x)>O}, then
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(F)f, £ dap=Q < u({r=>0}n)=0, where Q&g and mo(x)={é f{:g.

Theorem 3.1. Let f€M, A€ , then Q:(F)SAf ‘du € ﬁ(ﬁ) and for any
A€(0,1],

Cp= [$A1f du, %{J'éx,xthuf dp].
Theorem 3.2. Let feM, A€gf. If {f,A} satisfies the following con-
dition:

(#) for every A€(0,1), there exists A’<A such that ’

ll({f.xAxL>anf au})<oo,
then for any A€(0,1)

» gﬁf )= UA1f s SAAf auJ.
Proof. From Theorem 3.1. we have

(F) Sé.f * =[SA1f W %%%SAQf apl

[y e i € W)
for all AE(O,1]. S;ane ﬁ,AﬂnzAN f-XA“n\f'XAA. By using condi-
tion (%) and Theorem 14 in [4], we have
f = )f. dg — )f- di= f

SA% du j XAO(,, H ’ XAAN SAA dp,
and consequently,

(P fy £ a), = UA1f du, fy ap].
Corollary 3.1. Let feM, Aesd . If {f,A} satisfies: M({f >§A1f du})
<@ , then for any ae(0,1],
Corollary 3.2. Let M(X)<0D, then for any feM, A€dl, -and A€(0,1],

[(F)S_A_f ], = [SA1f ap, fp f ]

L. The convergence theorems

Theorem 4.1. Let A€d, f,fnGM, n=1,2,¢... If {fn} converges uni-
o

formly to f on A={x: m,(x)>0}, then

(8)1im(F) fufndit=(F)f, 1 ap.
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Proof. By using Theorem 3.1 we have
(7 Séfnd“]az UAI fndp, Zim fA‘( £ndu)
and v '
() fyf au)a=(fy, £ s Zipfp,t o)
hold for every n and all A€(0,1]. For any ¢ >0, since {f,} con-
verges uniformly to f on f\., there exists N such that, as n=N,
£ (x)-f(x)| <€ for all xek. By using Theorem 9 in (4], as n=N,
i - : ,
”A«fnd“ fA«f du‘\ﬁ
holds for all ®€(0,1)], it follows that
(8)33m(F) §, fndp=(F) f’éf du.
Theorem l+2 Let fneM, N=1,25ecey ge,L If fn 7f and there exists
N such that, as n=N, {fn,,A_} and {f,A} satisfy condition (%),
that is, for any n€(0,1), there exist A, <A and A'<A such that
Mt Xy, >Ip, tndi)<eo,
“({f'XA,(>SAAf d}) <o,
then
(8)}im(F) ngnd}.l:(F) Sg_f au .
Corollary 4.1. Let f €M, n=1,2,..., A&l . If £ Af and there ex-
ists N such that H({f>SA1dep})<oo, then
(8)14m(F) §y £,du=(F) §, £ o |
Theorem 4.3. Let f €M, n=1,2,..., A6k. If f ~uf and there exists
N such that M({fy >SA]f du})<oo, then
(8)35m(F) §y £,0p=(F) [, £ o
Corollary 4.2. Let f €M, n=1,2,..., A€éd , and K is null-additive
(1) If £ /f a.e. and there exists N such that p({f >f, £ du})
1
t i = .
<o, then (s)lim(F) SAfndg (F) SAf dp
(2) If £,Nf a.e. and there exists N such that H({fN>SA]f du})
<oo, then (s)lim(F) Séfndpz(F)fAf dM.
Theorem 4.4, Let f €M, n=1,2,..., Ak, If {fn} converges to f on



36

X and there exists N such that:
1 f> inf
(1) M SA'%?N £,
(2) H{{sup f,>f, f du})<oo
M {.35 n IA1 H} ’
then
(8)4im(F) §, frdu=(F [,y op.
Proof. Put gn=%g£ fs hnzggg fm, then
g <f =h,
for every n, and &y Vb hn‘yf.
From conditions (1) and (2), we have
(s)lim(F)SAgndu=(F)fAf du,
(_s)lll_i’-g(F)fAhndpz(F) fgf dp.
Furthermore, by using Proposition 3.4,
(F) §, 8,00 L (F) fyhpan <(F) fyhau
holds for every n. According to Proposition 2.4, we have
(8)31m(F) 8, dpt L)1 3m(F) Sﬁfndu <(8)31a(F) fyhad,
and therefore
(s)%i)néF)SAfndpz(F)jgf ay.
Corollary 4.3. Let f €M, n=1,2,..., A€k and p(R)<o. If {f,} con-
verges to f on X, then
(s)rlgg(F)SAfnduz(F)géf du .
Corollary 4.h. Let f,feM, A6 and p(R)<oo. If fp—f a.e. and M is
null-additive, then
(s)}l_:}g(F)S&fndpﬂF)ng .
Theorem 4.5. Let H(X)<®. Whenever {fn}, {fn} cM, converges in
measure to an a.e. finite measurable function f, then
(s)%_.n_;_&n)(F)SAfndpz(F)SAf dt holds for all A€d, iff M is autoconti-
nuous.

Proof. Necessity. Since f3Co{, the necessity is obtained by using

Theorem 16 in[4].
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Sufficiency. For any n€ (0,1}, it is easy to see that

[(F) géf dp]’\=[$A1f ., SAAf dy)
and

[(F) Séfnd}‘]a= UA] fndu, SAhfnd“]
hold for every n. According to Theorem 16 in (4], we have

iy, k=), €
it results that

(8)3im(F) Séfndpu('F) S‘&f .
Theorem 4.6. Let f €M, n=1,2,..., A€k , 4 is autocontinuous. If
{fn} converges in measure to an a.e. finite measurable function
f and there exists N such that {f,A} and {f,,A} satisfy condition
(=) for.every nzN, then |

(s)lim(F)SAfndp=(F)’Af dy.

-]

Corollary 4.5. Let f €M, n=1,2,..., A€y, H(A)<00, and p is auto-
continuous. If {fh} converges in measure to an a.e. finite meas-
urable function f, then

(s)%}g(F)SAfndp=(F)$Af dp. |
Definition 4.1. Let f €M, n=1,2,..., {fy} is said to F-mean con-

verges to an a.e. finite measurable function f, if

%_i’x:oﬂfn-f]dpzo.
According to Theorem 12 in[4], F-mean convergence is equivalent
to convergence in measure. If the condition that {fn} converges
in measure is replaced by the condition that {fn} converges in
F-mean in Theorem 4.5, Theorem 4.6 and Corollary 4.5, then the
corresponding conclusions still hold.
Theorem 4.7. Let f€M, A,Aj€sd, n=1,2,..., and u(R)<oo. if there
exists N such that, as n=N, (R )<® and {A,Ap} satisfies the

following condition:

(x#) 1im((A;)aBAp)=f for any NE(0,1],
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then
(S’%ié‘é(F”gnf dp:(F)&Af dp.
Theorem 4.8. Let féM, f be an a.e. finite function, M is autocon-
tinuous, A,A €4, n=1,2,..., and H(R)<®. If there exists N such
that, as n=N, M(z.n)<co and {A,An} satisfies the following condi-
tion:
(nns) %_’%m((An),.AA,\ho for any A€(0,1],
then
(s)']‘._:l.g(F)[énf du:(F)[éf dp.
Corollary L4.6. Let f be an a.e. finite measurable function, M is
autocontinuous, A,A €4, n=1 ,2,..., and H(K)<a:. If there exists
N such that, as n=N, M(R;)<00 and {A,A;} satisfies condition:
%&E“({X: mén(x)#mg(x»9=0, then
()Lim(F)f, £ du=(F) f, 1 ap.
In fact, if {A,A )} satisfies condition (#+), then‘{mh } con-
_ =n
verges everywhere to my . Conversly, even if {qAn} converges uni-

formly to~mA on X, we cannot conlude that {én?g}“satisfies con-

dition (=«),
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