THE FUZZY LINEAR NORMED SPACE $V_{m \times n}$

Wang Hongxu

Dept. of Basis. Liaoyang Institute of Chemical Fiber Industry. Liaoyang, Liaoning, China

ABSTRACT

In this paper a fuzzy inner product space $V_{m \times n}$ and a fuzzy linear normed space are definited and their properties are discussed. A definition of fuzzy cubic matrix is given. Applying it, we prove: there exists exactly one standard orthogonal basis in each fuzzy linear normed space $V_{m \times n}$.

Kev Words: Fuzzy inner product space of $V_{m \times n}$. Fuzzy Linear normed space of $V_{m \times n}$. Orthogonal basis of $V_{m \times n}$. Standard orthogonal basis and simple standard orthogonal basis of $V_{m \times n}$. Fuzzy cubi matrix.

I. FUZZY INNER PRODUCT SPACE Vm x n

For definition and signs used in this paper, see [1], and [5].

<u>Definition 1.1</u> Let $V_{m \times n}$ be a fuzzy semilinear space composed of fuzzy matrices. If for an arbitrary pair of elements A, B of $V_{m \times n}$, there is a number (A,B) of (A,B) such that satisfies

1) (A,B) = (B,A)

- 2) $(kA,B)=k(A,B), k\in\{0,1\}$
- 3) $(A+B,C)=(A,C)+(B,C), C \in V_{m \times n}$
- 4) (A,A)=0 iff $A=\theta$

then $V_{m\times n}$ is called a fuzzy inner product space $V_{m\times n}$. (A,B) is called the fuzzy inner product of A and B. Proposition 1.1 In fuzzy inner product space $V_{m\times n}$, the following formulas hold:

- 1) $(kA,hB)=kh(A,B), k,h \in [0,1]$
- 2) (A,B+C)=(A,B)+(A,C) . $C \in V_{m \times n}$
- 3) $(A,kB+hC)=k(A,B)+h(A,C), k,h\in\{0,1\}$
- 4) If A or B is θ , then (A,B)=0
- 5) $\left(\sum_{i=1}^{m} k_{i} A_{i}, \sum_{j=1}^{n} h_{j} B_{j}\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} k_{i} h_{j} \left(A_{i}, B_{j}\right), \quad k_{i}, h_{j} \in [0,1]$ Theorem 1.1 In fuzzy semilinear space V_{mxn} for any fuzzy matrices $A = \left(a_{i,j}\right)_{mxn}$ and $B = \left(b_{i,j}\right)_{mxn}$, we define $(A,B) = V_{i,j} \left(a_{i,j} \wedge b_{i,j}\right)$ as the inner product of A and B, then V_{mxn} is a inner product space.

The meanings of the following inner products are the same as one of the inner product of theorem 1.1.

II. THE DEFINITION OF A FUZZY

LINEAR NORMED SPACE V mxn

Definition 2.1 Let $V_{m\times n}$ be a fuzzy semilinear space, if for every element A of $V_{m\times n}$, there is a number $\|A\|$ corresponding to it that satisfies the following condition:

1) $1 \ge ||A|| \ge 0$, ||A|| = 0 iff $A = \theta$

- 2) $\|kA\| = k\|A\|$, $k \in (0,1)$
- 3) $\|A+B\| \le \|A\| + \|B\|$

then $V_{m \times n}$ is called fuzzy linear normed space, and $\|A\|$ is called the norm of A .

Theorem 2.1 In $V_{m \times n}$, let ||A|| = (A,A), then $V_{m \times n}$ is a fuzzy linear normed space.

The following fuzzy linear normed space, and its norm are all same as in theorem 2.1.

Theorem 2.2 $\forall A, B \in V_{m \times n}$, Cauchy-Буняковский inequality stands: $(A,B) \leq \|A\| \cdot \|B\|$.

Proposition 2.1 In a fuzzy linear normed space $V_{m\times n}$ the followings hold:

- 1) $\|A+B\| \le \|A\| + \|B\|$
- 2) $\|A\|^{k} = \|A\|$, ken
- 3) $\|A+B\|^2 \le \|A\|^2 + \|B\|^2$
- 4) $\|A+B+...+C\|^{k} \le \|A\|^{k} + \|B\|^{k} + ...+\|C\|^{k}$, ken

III. A ORTHOGONAL BASIS AND

A ORTHOGONAL SUBSPACE OF $v_{m \times n}$

Definition 3.1 Let A,B $V_{m\times n}$, if (A,B)=0, then A and B are called orthogonal.

A matrix group of consistiny of non-zero matrices is called an orthogonal group if every two matrices of it are orthogonal.

Proposition 3.1 In V_{mxn} , the following hold:

- 1) $\|A+B\| = \|A\| + \|B\|$ iff (A,B)=0
- 2) $\|A+B\|^2 = \|A\|^2 + \|B\|^2$ iff (A,B)=0
- 3) $\|A+B+...+C\|^k = \|A\|^k + \|B\|^k ++ \|C\|^k$, ken iff A,B,

..... , C are orthogonal each other.

Proposition 3.2 Let A be an element of $V_{m \times n}$ S={B|(B,A)=0, BeV_{m \times n}} is said to be the maximum orthogonal subspace over A. Definition 3.2 Let W₁ and W₂ be two subspaces of $V_{m \times n}$ if (A₁, A₂)=0 for arbitrary A₁ \in W₁, A₂ \in W₂ then the subspaces W₁ and W₂ are called orthogonal.

Proposition 3.3 Let S be a subspace of $V_{m\times n}$, then the set of all matrices to each of which S is orthogonal is a subspace, which is called the orthogonal subspace of S.

Definition 3.3 In V_{mxn} , a matrix is identity norm matrix if its norm is 1. If matrices of a identity norm matrix group of V_{mxn} are orthogonal mutually. Then it is called a identity normed orthogonal group. For the sake of convenience, a identity norm matrix is also called orthogonal.

Definition 3.4 A matrix group $\{A_1, \dots, A_t\}$ of $V_{m \times n}$ is independent if and only if there is no $A_i \in \{A_1, \dots, A_t\}$ such that is represented as a linear combination of elements of $\{A_1, \dots, A_{t-1}, A_{t-1}, \dots, A_{t-1}, \dots, A_t\}$. If there is a $A_i \in \{A_1, \dots, A_t\}$ such that it is a linear combination of elements of $\{A_1, \dots, A_t\}$ such that it is a linear combination of elements of $\{A_1, \dots, A_{t-1}, A_{t+1}, \dots, A_t\}$, it is said to be dependent. Definition 3.5 Let $A_i \in \{A_1, \dots, A_t\}$

Definition 3.5 Let A_1 , ..., $A_t \in S \subseteq V_{m \times n}$, if A_1 , ..., A_t are independent and $\forall A \in S$ can be denoted by a linear combination of A_1 , ..., A_t , then A_1 , ..., A_t is called the maximal independent group of S.

Proposition 3.4 Let $A_1, \dots, A_t \in V_{m \times n}$. If A_1, \dots, A_t are independent, then A_1, \dots, A_t is a greatest independent group of $L(A_1, \dots, A_t)$.

Theorem 3.1 (1) A non-zero orthogonal matrix spanning group of $V_{m \times n}$ is a maximal independent group of $V_{m \times n}$.

- (2) An identity normed orthogonal matrix spanning group of $V_{m \times n}$ is a maximal independent group of $V_{m \times n}$.
- (3) The numbers of matrices of orthogonal matrix spanning groups of $V_{m\times n}$ are equal. The number of matrices of identity normed orthogonal matrix spanning group of $V_{m\times n}$ are equal. Theorem 3.2 Let a set $\{A_1, \dots, A_t\}$ which $A_i \in V_{m\times n}, (i=1,\dots, t)$ be an orthogonal matrix group of $V_{m\times n}$, then $S=L(A_1,\dots, A_t)$ is a subspace of $V_{m\times n}$ and is called a orthogonal subspace of $V_{m\times n}$. $\{A_1, \dots, A_t\}$ is called a orthogonal basis of S. Definition 3.6 For two bases $\{A_1, \dots, A_t\}$ and $\{B_1, \dots, B_t\}$ of S that are two subsets of S, if $L(A_1, \dots, A_t)=L(B_1, \dots, B_t)$, then the two bases are called identical.

IV. FUZZY CUBIC MATRIX

Definition 4.1 An arrangement of $m_{X}n_{X}p$ elements of (0,1) of m rows, n columns and p storeys (see (1)) is called a $m_{X}n_{X}p$ cubic matrix of (0,1), denoted by $A=(a_{ij}K)_{m_{X}n_{X}p}$.

Definition 4.2 Let $A=(a_{ij}, k)_{m\times n\times p}$. The elements at the intersections of the rows i_1, \ldots, i_r , the columns j_1, \ldots, j_5 and the storeys k_1, \ldots, k_t in A forms a rxsxt cubic matrix,

which is called a subcubic matrix denoted by L_{A} $\begin{pmatrix} i_1, \dots, i_r \\ j_1, \dots, j_s \\ k_i, \dots, k_t \end{pmatrix}$.

 $L_{A} \begin{pmatrix} 1 & \dots & m \\ 1 & \dots & n \\ k_{1} & \dots & k_{t} \end{pmatrix} \text{ is called the subcubic matrix of storeys } k_{1}, \\ \dots & k_{t}. \text{ Specially, storey } k \text{ of } A, \text{that is } L_{A} \begin{pmatrix} 1 & \dots & m \\ 1 & \dots & n \\ k & \end{pmatrix}, \\ \text{is denoted by } A_{k}. \text{ We denote } A \text{ by } A = \begin{pmatrix} A_{1} \\ \vdots \\ A_{D} \end{pmatrix} \text{ where } A_{1}, \dots, A_{p}$

denote respectirely storey 1, ..., p of A.

$$\begin{array}{c} L_{A} \left\{ \begin{array}{c} i \\ j \\ 1, \ldots, p \end{array} \right\} \text{ is symboled of i,j r-c.} \\ L_{A} \left\{ \begin{array}{c} i \\ k \end{array} \right\} \text{ is symboled of j,k r-s.} \\ L_{A} \left\{ \begin{array}{c} i \\ k \end{array} \right\} \text{ is symboled j,k c-s.} \\ L_{A} \left\{ \begin{array}{c} i \\ j \\ k \end{array} \right\} \text{ is symboled j,k c-s.} \\ \end{array}$$

 $L_A \begin{Bmatrix} i \\ j \\ k \end{Bmatrix}$ is an element of row i, column j storey k of A and is symboled of i,j, k r-c-s.

Itself of a cubic matrix A can be denoted by L_A $\begin{pmatrix} 1, \dots, m \\ 1, \dots, n \end{pmatrix}$

To prove theorem 5.1 we shall need to use contents of this section.

V. THE STANDARD ORTHOGONAL BASIS OF V mxn

Definition 5.1 If A_1 , ..., A_t is an identity normed matrix group of $V_{m\times n}$ then $S=L(A_1,\ldots,A_t)$ is called a standard orthogonal subspace of $V_{m\times n}$ and A_1 , ..., A_t is called a standard orthogonal basis of S.

Proposition 5.1 If $A_1, \dots, A_t \in V_{m \times n}$ is standard orthogonal basis of $L(A_1, \dots, A_t)$ then A_2, \dots, A_t is standard orthogonal basis of $L(A_2, \dots, A_t)$.

Theorem 5.1 There exists only a standard orthogonal basis in fuzzy linear normed space $V_{m\times n}$.

Theorem 5.2 The subspace spaned by some matrices of standard orthogonal basis of V_{mxn} forms a standard orthogonal subspace of V_{mxn} .

VI. THE SIMPLE STANDARD ORTHOGONAL BASIS OF V mxn

Definition 6.1 let W be a finite spanning subspace . For AEW, if there is non-ordered relation " \leq " B, CEW, so that A = B + C, then A is called a compound matrix of W, otherwise A is called a simple matrix.

Proposition 6.1 A is a simple matrix of $V_{m\times n}$, if and only if A is like following matrix

$$A = \begin{bmatrix} 0 & ... & ... & ... \\ \vdots & \vdots & \vdots & \vdots \\ 0 & ... & a_{ij} & ... & ... \\ \vdots & \vdots & \vdots & \vdots \\ 0 & ... & 0 & ... & ... \end{bmatrix} i \quad a_{ij} \in (0,1)$$

where A is a mxn matrix that i,j r-c element is a_{ij} , other elements are all zero.

Definition 6.2 If a finite spanning subspace S of v_{mxn} possesses a standard orthogonal basis and every matrix of the basis is also a simple matrices of v_{mxn} , then the basis

is called a simple standard orthogonal basis of S and S is referred to as a simple standard orthogonal subspace of $v_{\mathtt{mxn}}.$

Proposition 6.2 A finite spanning subspace of V_{mxn} . If there is a simple standard basis, then this basis possesses

- 1) In this basis every matrix is simple matrix of $v_{m\times n}$.
- 2) In this basis every matrix is identity normed matrix.
- 3) The matrices of this basis are orthogonal mutually.

 Proposition 6.3 A is a indentity normed matrix if and only if A is just like

$$\begin{pmatrix}
0 & ... & ... & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & ... & 1 & ... & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & ... & 0 & ... & 0
\end{pmatrix}$$

$$i, \begin{pmatrix} i=1, ..., m \\ j=1, ..., m \end{pmatrix} (2)$$

where i,j r-c is 1, other elements are 0.

Theorem 6.1 In $V_{m \times n}$ there exist only a simple standard orthogonal basis.

Theorem 6.2 Let S_1 and S_2 are the orthogonal subspace of V_{mxn} . If S_1 and S_2 are orthogonal, then $S_1 \cap S_2 = \{\theta\}$. Proposition 6.4 Let S be a simple standard orthogonal subspace of V_{mxn} , then the basis of S is spaned by some matrix like (2).

<u>Proposition 6.5</u> Let S be a simple standard orthogonal subspace of $V_{m\times n}$, then $T = V_{m\times n} - S + \{\theta\}$ is also a simple standard orthogonal subspace and $S \cap T = \{\theta\}$.

Definition 6.3 Let S₁ and S₂ are two simple standard

orthogonal subspaces of $V_{m\times n}$. If $S=S_1+S_2$ and $S_1\cap S_2=\{\theta\}$, then S is called direct sum S_1 and S_2 , and is denoted by $S=S_1+S_2$.

Theorem 6.3 Let S_1 and S_2 be two simple standard orthogonal subspaces of V_{mxn} , $S = S_1 + S_2$. Then $S = S_1 + S_2 \longleftrightarrow S_1$ and S_2 are orthogonal.

Theorem 6.4 Let S is a simple standard orthogonal subspace of V_{mxn} and let $T = V_{mxn} - S + \{\theta\}$, then $V_{mxn} = S + T$, and we call T a direct complementary space of S. We denote by $S^{\perp} = T$, that is $S^{\perp} = V_{mxn} - S + \{\theta\}$.

<u>Proposition 6.6</u> The sum space of simple standard orthogonal subspaces of $V_{m\times n}$ is also a simple standard orthogonal subspace of $V_{m\times n}$.

VII. n-ary LINEAR NORMED SPACE Vn

Let $V_n = \{(\alpha_1, \ldots, \alpha_n): \alpha_i \in [0,1], i=1,\ldots,n\}$ then obviously V_n is special case of $V_{m\times n}$. All condusions of $V_{m\times n}$ are tenable for V_n thus V_n is also a fuzzy linear normed space its inner product is definited according inner product of $V_{m\times n}$.

Theorem 5.1' There exist only a standard orthogonal basis in fuzzy linear normed space V_n .

Similarly we can definite $\mathbf{V}^{\mathbf{n}}$ and carry on some discusses. The conerete content is not given detaile.

REFERENCE

- (1) Wang Hongxu and He Zhongxiong, Solution of Fuzzy Matrix Rank, Fuzzy Mathematics, 4(1984), pp35-44
- (2) Yang Cailiang, On Fuzzy Eigen-equations, Convergence of Powers of A Fuzzy Matrix And Stability (Chi), Fuzzy Mathematics, 4(1982), pp37-48
- (3) Wang Peizhuang, Theory And Application of Fuzzy Sets. Shanghai Science and Technology Publication Company, Shanghai China, 1983, p87
- (4) Zha Jianlu, The Dependence of a System of Fuzzy Vectors and The Rank of A Fuzzy Matrix, Fuzzy Mathematics, 4(1984), pp71-80
- (5) Ki Hang Kim and Fred W. Roush, Generalized Fuzzy Mathrices, Fuzzy Sets and Systems, 4(1980), pp293-315