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For an Fequantum system (X,M) we define a sum of any
pair of Fmobservables x and y, We show that the sum always
exists, and we use it in order to define some of known con~

vergence theorems of the comventional probability theory,

DEFINITION 1, An Fequantum space is a couple (X,M), whe~
re X is a nonempty set and Mc [0,1]X such that the follow-
in conditions are satisfied:

(1) if [I1]%(x) = 1 for any x€ X, then [1]&5!1;

(i1) if fe M, then £':1= 1 » fe My
(iidi) if [1/2]&(:) = 1/2 for any x€ X, then [1/2313‘14-;
0

o
(iv) X=1fn:- sup £, € M, for any {£} ~CM

The system M &s called in the fuzzy sets theory a soft 6-
-algebra (Piasecki [1]).

DEFINITION 2, An F=observable on an Fmquantum space (X,

M) is a mapping x: B(R1)—>K satisfying the following pro~
perties:

(1) x(A°) = 1 = x(A) for every AEB(R1 )3

00 1 @D 00
(i1) if{a} _,CB(R'), then x(U An) =V x(An),
n=1 n=1
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In particular, let ae¢ M, then mapping

ana’ 0,1¢ E

at O€E, 1¢E 1
x, (B) = § 04E, 1¢E (EeB(R'))

avat O,1€ E

is an Feobservable of (X,M) called the indicator of the
fuzzy set ae€M, If £; R'—-' R1 is a Berel measurable funoce
tion and x is an Fmobservable, them fx: E—x((B)),
Ee B(R' ))s is an Feobservable, too,

DEFINITION 3, A nonempty subset Ac M is said to be a
Boolean algebra (Cealgebra) of an Fequantum space (X M)
if

(1) there are the minimal and maximal elements 0, and 1,
from A such that, for any fe 4, 0,& £<1,, and
fvet=1,;

(11) A is with respect to A,V ,1, 0 42 1, @ Boolean al~.
gebra (Gealgebra),

Itiselearthato #1,

In particular, if x is an Pbobaervable of (X,M), then
the range R(x) = {x(E); EGB(R )} is a Boolean G-algebra
of (X4M), with the minimal and maximal elements x(§) and
J:(R1 )s respectively,

DEFINITION 4, We say that two elements a,be M are;
(1) orthogomal if a {1 = b and we write al bj
(11) compatible if a = aA bVaAb;
b =bAaVv bAa™ and we write a«> by}
(111) stromgly compatible if ae> berasrbeva,

Two obsombles x and y are compatible if x(E)<— y(F)
for any E,F€ B(R Jo

THEOREM 1, (Dvurelenskij, d., Riedan, B, [2]), Let
{atx t€ T} be a system of fuzzy sets from M, The follows
ing asserthons are equivalent

(i) {at: t€T} is a system of mutually strongly compa~

tible elementsy
(i1) a v at"' =ayv a;" for any s,t€ T;
(1i1) there is a Boolean Gmalgebra of M containing all
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{ays teT],

THEOREM 2, let x be an Fwsobservable of an F-quantum
space (X,M) and let B_ (t) = x((wo00,t)), te€ R', Then the
system {B_ (t):s te R} fulfils the following conditions:

(1) B, (s)<B (t) if s& t;

(ii) VB (t) =

(111) /\ B_(t) = a'y

(iv) \/ B_(t) = B (s);
t<s

(v) Bx(t)v B (t) = a, where a = x(R1) and at = x(g).

Conversely, if a system {Btz te¢ R‘} of fuzzy sets of an
Faquantum space (X,M) fulfils the comditions (i) ~ (V)
for some a€ My, then there is a unique Faobservable x such
that B_(t) = B(t) for any t, and x(r') =

PROOF, We prove only the converse implication, Due to
(v), the system {B(t): t€ T} consists of mutually strong-
1y compatible elements, so that according to Dvuredenskij,
A., Riedan, B. [2], there is a Boolean Gmalgebra A of M,
containing all B(t), Due to the result of Dvuredenskij, A.
[3], there exists a unique Feobservable x, such that
x((=00,t)) = B(t).

DEFINITION 5., Let x and y be two Feobservables of (x,m),
If the system {B (t): t€R }, whexre

B, gy (t) = I}iq(lax(r)/\n,(e ~ T)), teR',

determines an Feobservable z of (X,M), then we call it a

sum of X and y"*wr:l.te Z =X @ Ye It 18 clear that if the
sum exists, then it is unique,

THEOREM 3., For every two Feobservables x and y of an Fe
quantum space (X,M) there exists its sum,

PROOF, We show that the system {B__ (t)z tcR'} fulfils
the conditions of Theorem 2, For the proof of Theorem 3 is
useful the following leama,

Lemma 1, ILet S be a countable dense set in R‘. let us
denote for the observables x,y:
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Bi‘y(t) = s\is(fx(s)/\ By(t ~ 8)), then Bi‘y(t) = Bx.y(t)

for every t€R ,

Now, the proof of (i), (ii), (iv) is simple, due to tfe
Gmcontimnity of M, It may be proved that B__ (t)v Bx.y(t)s:
= x(R1)A y(R1) so that a = x(R1 A y(:ﬁt1 )s To prove

/1} Bx‘y(t) = x(B)vy(@f) = at = (x(R1)/\y(R1)) s We take

into account property (v) that { y('l:): te R'} 1s a syse

B
tem of matually strongly eonpatib:xL: elements of an Fequan~
tum space (X,H). According to Theorem 1, there exists a
Boolean Gealgebra A containing all B xcy(t) for any t€ R1.
Every Boolean Oealgebra A in M is Gedistributive, i,e., if
T and S are countable sets, {a  : t€T, s€S}CA, then
beT des o té\sT tcv‘l‘ “te(t)
which enables us to prove (iii),

QeE¢De

PROPERTIES OF THE SUM

(i) x®@y =y ® x for any two Feobservables x,Yy;

(i1) (x @ y) @2 =x @ (y ® z) for any three Fwobservables
X,y and z§

(1i1) if xe»y (due to Dvurelenskij, A,, Riedan, B,[2], the~
re exists an Feobservable z and two Borel measurable
functions £ and g such that x = foz, ¥y = goz), then
x®@y = (f + g)oz,

Hence, if M consists of orisp subsets, that is, M is a
Gealgebra of subsets of X, them the sum of Feobservables
coincides with a pointwisely defined sum, Ideed, in this
ocase, for x and y, there are umnique mappings: u,v: X—» R1,
such that x(E) = u”'(E) and y(F) = v"'(F); E,Fe B(R'), and
x e y(E) = (u+ v)™'(£) for any E€ B(R'),

(iv) Let a€ R' and put
]X a€E
Ia(E) =

a?E,
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then x @ I = f_.x, where fa(t) =t + a.

(v) We define the subtraction of x and y as follows
x@®YyY =X @ (»y), where (~y)(E) = y({t: ~teE}),
E EB(R1 )e

CONVERGENCES OF FwOBSERVABLES

DEFINITION 6, An Festate on an Fequantum space (X,M) is
a mapping m: M— [0,1] such that
(1) m(fv (1 » £)) = 1 for every £€ M;
(11) 1f £,€M (1 = 1y & eps) and £,61 = fd (L # j) then
m( \{ fi) =§ n(:t‘i),.

In fuzzy set theory the mapping m is called a P-measure
(Piasecki [1] ).

DEFINITION 7, Let x be an Feobservable, and let m be an
Fmstate, If integral m(x):= f1t am(t) exists, then m(x) is
called the mean value of x iR M, where m_: E—»m(x(E)),
E€ B(R’), is a measure on ]i'-(R1 e |

DEFINITION 8, We say that a sequence of {rxn} ;’;1 of FeObe
servables of (X,M) converges to an Peobservable x:
(1) in an Festate m, if for every £>0,
lim m((xn - x)[e&E]) = 15
(ii) almost everywhwre in an Festate m, if for every ()0,

o0 0o
m(V A (x, ~ x)[=£,E]) = 13
k=1 n=k _
(111) everywhsre, if foy every £50,

v A ((xn - x)[né,c‘.]) = 13
k=1 n=k

(iv) uniformly on a< M, if for every £>0 ]no such that,
for all ndn , (x ~ x)[~5E]>a;

(v) uniformly, if for every £>0 there exists n, such that,
for all nn,, (xn - x)[=f,E] = 13

(vi) almost uniformly in an Festate m, if for every£>0,
there exists an element a € M such that m(a“')é&‘,, and
a sequence { xn} ::1 converges to x uniformly on a,

Our concept of the sum enables us to formulate and prow
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ve many familiar limit theorems known in classical proba~
bility theory. For example, laws of large numbers, central
limit theorem, lLebesgue convergence theorem, Egorov theow
rem, ergodic theorem, etc, For example, we formulate Egom
rov theorem and ergodic theorem:

BGOROV THEOREM, If the sequence {x }°°  of Feobservab~
les converges to an Feobservable x in an Festate m, then
this sequence converges to an Feobservable x almost unie
formly in an Fwstate m,

The Egorov theorem may be proved directly or we define
the ideal of zero sets I_ = {a: m(a) = 0} and we define
the factor system M/:!:m which is a Boolean Gwalgebra., This
method may be used also for the proof of the ergodic theow
rem,

A mpp:l.ng Ts H—»M such that

(1) T(a ) = T(a s BEM;
(11) ‘C(v ai) = V ‘[’(a )s {ai}:__1 C My
is ealled a honomorphism of M into M, We say that a homow
morphism Tof M is ergodic in a state m if
(1) m(Ta) = m(a), a€ My
(11) Ta = a implies m(a)€ {0,1},

ERGODIC THEOREM, Let x be an Feobservable, and let T be

a honmrphisn of (X4M), ergodic in a state m, Let m(x) =

w1
= 0, then -\ Q T x—>] almost everywhere in m, where I

0 0
=1
is an observable of (X4M) such that I (E) ={ hAif O B
) O¢ E.
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