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SOLUTION OF LR-TYPE FUZZY SYSTEMS OF LINEAR ALGEBRAIC
EQUATIONS

Abramovich F., Wagenknecht M., Khurgin Y.I.

ABSTRACT

Systems of linear algebraic equations with LR-type fuzzy
coefficients are considered in this article. The notion of solu-
tion of LR-type fuzzy sistem is discussed. It is shown that in
general case the exact solution may not exist, so it is offered
to find an approximate one (quasi-solution). It appears that such
problem“@ay be reduced to an ordinary (non-fuzzy) non-linear op-

timization problem. The numerical example of application of this

method is provided.

A system of linear algebraic equations is the simplest and
the most useful mathematical model for a lot of problems consi-

deredby applied mathematics. In practice, unfortunately, the

exact values ofcoefficients of these systems are not as a rule
known. This uncertainty mey have either probabilistic or non-
probabilistic nature. Acgordingly, different approaches to

the problem and different mathematical tools are needed.

Ir this article systems of linear algebraic equatiocns
whose coefficients and right-hand sides are fuzzy numbers of
certain type are considered.

First df all it is necessary to determine arithmetic
operations on fuzzy numbers. For this purpose the extension
principal introduced by Zadeh [6j}is used. According to Zade' g

principal :
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M gy (2) = svp minflz(), f5(y) | (1)

ZaxX+y
/u &5 (z) aziigymin{/ui-(x)./ly(y)} ~ (1p)
/l 2.5 (z) =Zi;§ min{/ui—(x),/us;(y)} | (1c)

My (2) =z§;pymin{}u~(x)/a snl (1a)

(for more details see [1_], [4_])

Evidently it is inconvenient to age formulae (1a)-(14)}
in general case. We will use the conception of LR-type fuzzy
numbers introduced by Dubois and Prade ([1] =[4D:

Let us consider two continious functions L : R1—’[D;1]
and R ¢ RJ-’[O;1] with the following properties :

1) L(-x) = L(x) ; R(~® = R(x)

2) L(0) =1 ; R(O) =1

3) L and R are non-icreasing on [O;+ 00[

4) 1lim L(x) = 0 ; lim R(x) = O
X - 00 X - OO

Definition. A fuzzy number m is said to be an LR-type fuzzy

number iff

L (TE:%(I_.), x<m,A>0

ﬂ;g\(x) =
)_(_-Er_n_ ), x>m, P)O
(if = P O,m is an ord}nary (non-fuzzy) number m)

m characterizes the mean value of m , while ol and F are
the left and the right coefficients of "fuzziness" respec-
tively.

Symbollicaly we will write : m = (m,d ,P)»LR
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Thus an LR-type fuzzy number is determined by the types
of functions L, R and by 3 parametrs.

It is clear that in many cases the membership function of
an arbitrary fuzzy number may be approximated by membership
function of LR-type so in the ugnel we will deal only with LR-
type fuzzy numbers.

Arithmetic Qperations for LR-type fuzzy numbers are much
simpler than (1a) - (1d).‘Indeed, it may be shown ([4]), that

(m, o, B )+ (n,d’,(g)LR= (m+n,o(+2(,]3+J‘)LR (2)

- (m) d P)LR“ ( m,P d):RL (3)
(m’ d P)LR (n9 X) J‘ ) = (m-n, d"‘J\P"-X )LR (4)

Knowing types of L,R fuctions and calculating respective
parametres by (2)-(4) one can simply obtain membership fame-
tions for addition and substraction of LR-type fuzzy numbers.,

The product 7% will not be in general case an L?-type
fuzzy number as well, but the following approximate formulae
may be used :

(m,c{,P)LR . (n,d&, J‘)LR (mn,dnJm,pnﬂs\m)LR ,>0;n>0 (5a)
(m’d’P)LR . (n,¢, S)R &(mn, b'm-Pn Jm-oln) ,m>0, n 0 (5b)
(m,d,F)RL . (n,f, J)LR”(mn o(n-tfm,Fn d’m) m<0,n>0 (5¢)

RYL“/ -
(m’d’P)'LR' (n,K,S)LRN(mn.-pn-;m,-dn-(m) m40,n<-0 (5d)

-1 ,3
(mys P)gp & (;}.f@,% g » B0 6a)

- m m

R éh+dn Xm+Pn
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Remarks :

1) formulae for multiplication and division depend on the choi- -

se of signs of factors 'r; and 1
2) O can not be included in supports of factors, that is
0 ¢ supp .?E; Oqﬁ supp T
Let us discuss some aspects. of applying these approximate
formulae. Let, for example, L = R, 0(=P, y= J,
m = (m, o(,ﬁ )LL>O’ n=(n,d, X)LL >0. Let us calculate the
error made by using (5a), We have.(by [5]) :
L(£(z)), z< mn

/u ==(2) =

L(~-f(z)),z>mn

dn+¥m 1 V > —  mn-z R
= - - 3 o‘y = ° -
where f(z) ¥ Y ()oln -Jﬁ»)) '+4 z T
o . 4etY(g-mn)H/?
k(z)=0,5(1+[1+ flz-mn -~ )>0,5 '\‘»
| n+ m)
mn-z
Let f(z)= £*¥(z) =
oln+§m

The relative error of the last approximation is
£(z) =1 - k(z)=< 0,5, Let L:1(O) denotes the minimal positive
root of equation L(x)=0, while L-1(0) denotes the maximal nega-
tive one (evidently the set of‘solutions of the equation L(x)=0
is ] -00; L:1(O)J U[LI1(O); +Ib<>[). It is clear, in view of
the properties of L there exist finite L:1(O) and L:1(O) (since
Ogt supp m, Odsupp. n) and L:1 (0) =-L:1 (0).

Then supp '1?1"15':--[mn-I..:_1 (0) (@n+dm) ; mni-I;_:1 (0) (o(nﬁYm)]
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o s 2
It is easy to show that Smax=max£(z)'$.0,5(1- [1- 4odd j/" ), &

- ; z (ot Im] +J[fn]"32 ‘
where A =L, (0)(edn + &m), or in general caseA=IJ'1§O)(,ol/n] +§[mf ).

Let us suppose that max 'L.'(x)l =M <09, Then
. X | . :
§(2)=[L(e(2)-1(£%(2))| ¢ Memaxl€(2)] -max [e(z)[ g wreBB . EmEx 7y
2 ‘ 2 ol Jn|+¥[m| 1'€nax :

This estimate is too rough and therefore may be used only

for moderate values of M, If M is large or inéf‘in‘ite one has :

to estimate J‘max by solving the equation :

'"(2)=L' (£(2)p£'(2) + L' (—BR=2 ),1 -0 ‘
S ’ Z') ot otln[-rnm[ )etln/+d'lml (8)

Now, knowing how to deal with fuzzy numbers, lét us discuss
the problem of solution of systems. of linear algebraic equati -
ons with fuzzy coefficients and fﬁ"zzy right-hand sides :

P~ Lo . ~ P
ByqXq *eee +34,X0 = by
® O 0 5 & & 5 8 " 0 0" 0O OB e 00N e (9)

~ ~ o/ ’_;
p'e ee +a__X v
1%q *e nmmn = n

o

n

At the first sight the usual methods such as Kramer's or
Gauss can be used. But this is a wrong way. Let us illustrate

this for the case.n=1 :

=D (10)
It would be wrong to write the solution of (10) in the
"usual'" form :';=?)’/§. The problem is that the set of fuzzy

numbers is no longer a group.Indeed,

+ 0 =m, but m +'(-m) # O

57 N

c 1=, butm e (1) # 1

Ay 7



It means that (¥%=D) is not equivalent to (¥=b/3). It !
may be shown that (§=3/5)=%>(3§§;57 i.e. using usual methods
we extend the set of solutions of the equations. For example,
the solution of the equation aX=D may not exist, but the forsy
mal application of usual methods ( if 80 ) will give X=b/a.

It follows that in order to solve (9) we have to look
for algorithms other than usual ones.

As it was mentioned above we will deal only with LR-type
fuzzy numbers (L, R being arbitrary admissible functions but
the que for all coefficients and right-hand sides),

~ ~o P ~ '
= = (
Let a4 (aij’dij’Pij)'LR’ b, (bi,_‘gi,bi)LR, Ogt supp aij,0¢ supp by
Since the set of LR-type fuzzy numbers is closed under
arithmetic operations (having in mind approximate formulae

for multiplication and division), it is natural to suppose

that §1 are also in this set i.e. we obtain §1 as
~r -~
Xi=(xi’pi’qi)LR’ Pi?()o qi; o, Oésupp xi

Some difficulties may arise. For example, consider an LR-

type fuzzy linear system of two equations (i.e. n=2) :

a19Xq + ay0X%, = Dby
a51Xq + ayyX, = Dby

where '5'117 o, '5,'12<o,
_ ~ ~
Suppose that we apriori know that x1>0, x2>0. Then
r~ ~r
3yq%q = (agqxy,dygxy + pyagg, Pryxy + qqag)p |
~ A L

a1p%, = (ay5%5,d,,%, - Up2310s P1p¥p = Ppry,)py,

The problem is that the sum of LR-type fuzzy number and
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RL-type one is undefiened.

This fact leads us to the necessity of consideration
only LL-type fuzzy numbers. Let us notice that the genera-
lity of our problem will not be affected very much ( by va-
riating the type of L and values of respectivg parametrs we ..
can approximate a wide set of membership functions ) but at
the same an important result will be obf%ineﬂgnamely, the
common ( that is independent of signs of factors ) formula

for multiplication of LL-type fuzzy numbers.

04 supp 3, O¢ supp b
Then

1) cx=c1+c2=]blﬁx+P)14al(£+8)
2) cxx=c1-02=b(d- P +a(&-¥)

The proof follows from (5a)-(5d) if we set L=R,

According to this lemma @

SEX) , XK)

=1 * = ®_
c,= 5 (c®+c Cr= 3 (c®=c

+e®*), J(c®-c**)) (12)

Thus, 2D (ab,g(c

We now turn back to the solution of fuzzy linear system.

Consider the i-th equation of system (9) :

o~

= K 4
2 ai:} ;= by . (13)
The 1eft-hand side of (13) is a LL-type fuzzy number

j=1

For example, for system (11)
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Ay = aqqX + apX
Ay =a X 4Py grelioXpmQo8yp i Ay = PyyXqtaqaqq+BepXomPodyp
The right-hand side of (13) is also a LL-type fuzzy num-

ber %;= (bi,gi,gi )LL’ Two fuzzy numbers are equal iff their
membership functions coincide. For LR-type fuzzy numbers (and
also, of course, for LL-type ones) this means that values of
3'paramefgrss which characterize such fuzzy numbers must be
equal. Consequently, this leads to the system of ordinary
(non~-fuzzy) equations :

A, =

o’

i i
Ai = bi y, 1 =1,n : (14)
Ai = bi

with the following restrictions :

py# 00 a5320 . (15).

s 3 = 1,n
0 ¢ supp %; ,‘ (16)
The system (14) is a linear s&stem of 3n equations

with 3n variables =~ xj,pj,qj (j={jﬁ). If the system (14) has
unigue solution which also satisfies the restrictions (15),
(16), then our problem is solved. In opposite case the prob-
lem (14)-(16) can not be solved. So in general case the exact
solution of system (9) may not exist and it makes sence. to
change the notion of such solution and to look for approxi-
mate one (quasi-solution). According to[ 5:]1et us consider

the following problem :
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( mln F(A1-b1,ooo,A b A1 b1,oco’_A_n-hn’oc-,A "bn)

14
X530y non
p.)O ——— )
L J j = 1,1’1 v (17)
:xj;;() ‘
L 0 qﬁ sSupp X.

d

where F is a gertain functional measuring the deviation

of the lefithand side of (14) from the right-hand one. This
allows also to solve systems in which the number of equtions
(m) is more than the number of variables (n) (to solve in

the sence of minimization of functional F).

In the simplest case when F is a quadratic functional

(17) is transformed to :

( min 3 [x J(A;=0;) 24k, (44 =D, ) Pekes (B -5,)
+9 D

i=
M s _
ps2 0 i=1,m _ (18)
) 17 . (m> n)
q 20 j = 1,n
g Of; Supp Xy

where k1, k2, k3 are “weight" coefficients.
According to the arithmetical operations on fuzzy numbers

introduced above, we have :

n f—
A= aygxg i Ay=(a % AT By (ay*-AT") (19)
3=1
4}
where Ay=p;+Ej= 5 ([x;| (e g+ fyy) +lagy] (pyvay))
3=1
| (20)
®H

— n
A =h -hi=S (xj(dij-Pij) + aij(Pj-qj))
j=1
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It makes sence to consider the following problem iastead

of (17)

. .3 Ew ¥ - el b " 1
( minF(A,=byyeee, A =b s AY=(B 4D, ) seues An=(B +D ), 472 (D =D ) ,eur, Al’n“-'(_‘gm-bm)) :

%Py

1 p. 20 —
J j= 1,n
QJ?O i T_;l (man) (21)
= ’

LO¢ SUPP X, . i
Let us discuss the restriction O¢ supp xj. It is clear
-1 -1

-1
that supp ;5 =[:xj-L . (O)pj; xj+L . (O)qi], where L (0) was

introduced above. For example, for L(x) = max(0;1-)x]p),

a1
(p; O}L+ (0) = 1, supp ;j = [xj-pj;xj+qj].

The restriction O« supp ij is equivalent to the follo-
wing one :
-1 -1
(x4-1 4(0)py)(x4+L ,(0)ay)> 0
Thus, the problem of solution of LL-type fuzzy linear
system is reduced to an ordinary (non-fuzzy)non-linear opti-

mization problem : :
(min F(A,=Dypeon A ~B, AT~ (244D e AT=(B+D ), ATE(n,~by Ipeashiy = (B =D 1))
X3Py | | |

(XEL:1 (0)pj)(xj+L;1(o)qj);o

PETR ) (22)
.20 — m2n
pa;o =T
4.7

L % | ;
where A,, A?, A?x(i=1,m) are given by (19), (20).
The unique solution of (22) exists, for example, if the

functional F is the quadratic one. o

T e :
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Often, especially in practice, we may have some apriori

information about signs of §5

regression's problems, when the type of dependance is apriori

- This happens, as a rule, in

known and it is necessary only to find the values of respectiQ
Ve parametires. Besideé, the signs of QS may be often determi-
ned in practice from the physical nature of the problem. This
apriori information about signs of ;3 is very helpful and it
makes the expressions for the functional and restrictions of
(22) much simpler. When signs of all EE are known, the restrics
tions are reduced to linear ones.

Now let us mention one important particular casé of LR=- .
type (or LL-type) fuzzy linear system.

~
Let membership functions of‘gi and bi be symmetric ones,

ij
. s
l.€. aij

common in practice. Such fuzzy numbers will be called symmetric

A A
= (aij’oﬁj’dij Jpge Py = (bysb;,b;)yp. This case is

fuzzy numbers. For such numbers the above lemma certaiﬂ;y
holds. We have :
3.5 = (ab,Alv] s €lal, dfb] + £laf )y
where 3 = (a,e,d)1; T = (v,€,8);1
Also notice the fact that
2+ D = (a+b,d+£}&+£)LL

Thus, the set of symmetric LR-type fuzzy numbers is also
closed under operations of addition and multiplication (having
in mind again the approximate formula for multiplication). So

Med . . . AL
we will look for xj belonging to this set, i.e. sz(xj’pj’pj)LL

Then :
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- N\ n
3218.13 J H "'i = Ai = Ai =‘.2 (]aialpa+lilc(iJ ) (23)
= J=

(17) is transformed to :.

Al Nn A
(- mln F(A -b1,...,A -b A1 b1,...,Am-bm)
j*P5
‘ lx | - (O)p 20  j=1,n (m2n) (24)
pjzo |

e

(18) is respectivly transforms to :

min.;ﬂ}1(j?a -b ) +k (ji(laialp it x50k 5)- Q )g]

WD . = =1 =
XD 4 i=1 41 j=1
- )Dpa> = 1. ‘
|x51 - L ,(0)py20 L= T (25)
pj;O j = 1,n

In conclusion we remark that given a fuzzy system it
is sometimes useful to solve it at first as a non=-fuzzy one,
neglecting the fuzziness of coefficients. This is for two
reasons :

1) by solving a respective non-fuzzy system we may get some
apriori information about signs of ;};

2) the solution of the non-fuzzy system may be used as an’
initial pointg.for non-linear optimization problem (22)
or (24),

Numerical example.

Consider the following system (n=2, m=2) :

L
L d ~ P~ r Lacd 3

214Xy + a,5%X, = b,

(26)
P21%1 * 835%y = b,

where

e
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a11=(8; 0.05; o.os)LL ;’5’122-.(3; 0.01; 0.01)LL
. . . M ——— * .
5’251=(3, 0.02; o.oz)LL, a22—(4, 0.04; 0.04)LL.

S~

B =(31; 1.5 1.)113 D,
1= 3 ’ ey 1. LL, b2=(26, 008, OQB)LL

Nl

The respective non-fuzzy system is :
8 x, + 3 x, = 31
3‘x1 + 4 X, = 26
The solution is : x, = 2; X, = e
. . ~
Using this fact we may obtain that 37;’1>o, x,>0.
Now reduce the problem (26) to a non-linear optimization
problem using methods described in this articles We have

(in case k,= k,= 1) :
: 1 2 5 )
min {(8x1+3x2-31) +(8p1+0,05lx1h6P2+0,01IX2]-1)»*
Xy9Xn9PqsP
10720 F 4 F2 o >
+(3x1+4x2-26) +(3p1+0,02|x1l+4p2+0,04Ix21-0,8) }
[x4]-P42 0 (28)
|x,| -p, >0
py20
Py 30
(recall that L7 (0)=1)

Taking into account the information about signs of Q:
and §; we obtain the quadratic programming problem, Its so-
Jution is @

Xy = 2 Py = 0.07
0.08

X, =5 Py
~r ~ .
Thus, x1=(2; 0.07; 0'07)LL ; x2=(5; 0.08; 0.08)LL .
If we choose p=0.1 (we use small values of p in order
to apply (7) to illustrate the process) the errors of appli-

cation of approximate formulae for multiplication will be 3



£14%5:1073 & x3.1077
§4%0,013 8,,0,014 é;=£1+£2eo,027
£2456 1072 822":6.10"3
§pq20,014 522:0,024 fz=¢£1+ 550,037
Even these rough estimates show that in this case we have

correctly used the approximation formulae.,

For comparison let us solve the system (26) by Kramer's

method. We will have : ¢
\

X, = 2 py = 0.4
X2 = 5 p2 = 006
ices X, = (25 0.4 0.4)11,3 3‘{2 = (5; 0.6; 0.6)17.
We observe that the "fuzziness" of the solution increases

significantly by the reasons mentioned in this artiéle.
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