SOME PROPERTIES OF POSSIBILISTIC LINEAR EQUALITY AND INEQUALITY SYSTEMS

R.Fuller

Computing Center of the ELTE University, H-1502, Budapest 112, pf 157, Hungary

Linear equality and inequality systems with fuzzy parameters defined by the extension principle are called *possibilistic* linear equality and inequality systems. The solution of these systems is defined in the sense of Bellman-Zadeh [1]. This paper investigate stability and continuity properties of the solution in the above-named systems.

Keywords: Extension principle, stability

1.Preliminaries.

Definition 1. A fuzzy number is a fuzzy set $\tilde{\mathbf{a}}$, $\tilde{\mathbf{a}}$: $\mathbf{R} \to [0,1] = \mathbf{I}$, which is upper-semicontinuous, normal and convex, i.e. (i) $[\tilde{\mathbf{a}}]^{\alpha} = \{\mathbf{x} \mid \tilde{\mathbf{a}}(\mathbf{x}) \geq \alpha \}$ is a closed interval, (ii) $\exists \mathbf{x}$ such that $\tilde{\mathbf{a}}(\mathbf{x}) = 1$, (iii) $\tilde{\mathbf{a}}(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) \geq \tilde{\mathbf{a}}(\mathbf{x}) \wedge \tilde{\mathbf{a}}(\mathbf{y})$, for $\lambda \in \mathbf{I}$.

By \mathcal{F} we denote the set of all fuzzy numbers $\tilde{\mathbf{a}}$ with the membership function having the following properties

- (i) $\tilde{a}(t) = 0$, outside of some interval [c,d],
- (ii) there are real numbers a and b ,c \leq a \leq b \leq d such that

a is strictly increasing on the interval [c,d], strictly

decreasing on [b,d] and $\tilde{a}(t) = 1$ for each $t \in [a,b]$.

If \tilde{a} , $\tilde{b} \in \mathcal{F}$ and $\lambda \in \mathbb{R}$ then $\tilde{a} + \tilde{b}$, $\tilde{a} - \tilde{b}$, $\lambda \tilde{a}$ are defined by the Zadeh's extension principle in the usual way.

Let * be a natural relation defined on the real axis R. The * relation can be extended to fuzzy numbers by means of the following extension principle [5].

Definition 2. Let \tilde{a} , \tilde{b} be fuzzy numbers. Then the truth value of the assertion $\tilde{a} * \tilde{b}$ (e.g. " \tilde{a} is greater than \tilde{b} ", which we write $\tilde{a} \geq \tilde{b}$), is Poss($\tilde{a} * \tilde{b}$) defined as

Poss(
$$\tilde{\mathbf{a}} * \tilde{\mathbf{b}}$$
) = $\sup_{\mathbf{x} * \mathbf{y}} \tilde{\mathbf{a}}(\mathbf{x}) \wedge \tilde{\mathbf{b}}(\mathbf{y})$

It is easily checked that [3]

$$Poss(\tilde{a} * \tilde{b}) = \sup_{t * \tilde{0}} (\tilde{a} - \tilde{b})(t)$$

Let L > 0 be a real number. By Lip(L) we denote the set of all functions $f \colon \mathbb{R}^k \to \mathbb{R}, (k \ge 1)$ satisfying the Lipschitz condition (in norm $\|.\|_1$) with constant L, i.e.

$$|f(x) - f(y)| \le L||x - y||_1, \quad \forall x,y \in \mathbb{R}^k$$

where $\|\mathbf{x}\|_1 = \|\mathbf{x}_1\| + \ldots + \|\mathbf{x}_k\|$. We define a metric D in \mathcal{F} by the equation

$$D(\tilde{a}, \tilde{b}) = \sup_{\alpha \in I} \max_{i=1,2} \{|a_i(\alpha) - b_i(\alpha)|\},$$

where $\tilde{\mathbf{a}}, \tilde{\mathbf{b}} \in \mathcal{F}$ and $[\tilde{\mathbf{a}}]^{\alpha} = [\mathbf{a}_1(\alpha), \mathbf{a}_2(\alpha)], [\tilde{\mathbf{b}}]^{\alpha} = [\mathbf{b}_1(\alpha), \mathbf{b}_2(\alpha)].$

A symmetrical triangular fuzzy number \tilde{a} denoted by \tilde{a} = (a,α) is defined as

$$\tilde{a}(t) =$$

$$\begin{cases} 1 - |a-t|/\alpha & \text{if } |a-t| \leq \alpha, \\ 0 & \text{otherwise} \end{cases}$$

where $a \in \mathbf{R}$ is the center and $\alpha > 0$ is the width of $\tilde{\mathbf{a}}$.

2.Results

Consider the following possibilistic linear equality and inequality system:

$$\widetilde{\mathbf{a}}_{i1}\mathbf{x}_1 + \dots + \widetilde{\mathbf{a}}_{in}\mathbf{x}_n * \widetilde{\mathbf{b}}_i , i = 1, \dots, m$$
 (1)

where $x = (x_1, ... x_n)$ is a vector of real variables, $\tilde{a}_{i,j}$, $\tilde{b}_i \in \mathcal{F}$ are fuzzy numbers and * denotes < , \leq , = , \geq ,or >. We can define the solution of the system (1) as

$$\mu(x) = \min_{i} \text{ Poss}(\ \tilde{a}_{i1}x_1 + \ldots + \tilde{a}_{in}x_n * \tilde{b}_i) \ , \ \forall x \in \mathbb{R}^n, \ (2)$$
 or, equivalently

$$\mu(\mathbf{x}) = \min_{\mathbf{i}} \sup_{\mathbf{a}_{i,j}, \mathbf{b}_{i} : \sum_{j=1}^{n} \mathbf{a}_{i,j} \mathbf{x}_{j} * \mathbf{b}_{i}} \widetilde{\mathbf{a}}_{i1}(\mathbf{a}_{i1}) \wedge \dots \wedge \widetilde{\mathbf{a}}_{in}(\mathbf{a}_{in}) \wedge \widetilde{\mathbf{b}}_{i}(\mathbf{b}_{i}).$$

A measure of consistency for the system (1) is [2]

$$\mu^* = \mu(x^*) = \max_{x \in \mathbb{R}^n} \mu(x);$$

and x* is the maximizing (or best) solution.

In the next theorem we see that from Lipschitz-continuity of fuzzy parameters in (1) follows the Lipschitz-continuity of the solution (2).

Theorem 1.Let $\tilde{a}_{i,j}$, $\tilde{b}_i \in \mathcal{F} \cap Lip(L)$ be fuzzy numbers. Then

$$\mu \in Lip(LS)$$

where $S = \max_{i,j} S_{ij}$, $S_{ij} = \max\{ |t| : t \in \text{supp } \tilde{a}_{ij} \}$.

The proof of this theorem is based on the following lemmas: (I am ready to send the complete proof of this theorem for anyone interested)

Lemma 1. Let \tilde{a} , \tilde{b} , $\tilde{c} \in \mathcal{F}$ be fuzzy numbers and let λ , $\mu \in \mathbf{R}$ be real numbers. Then

$$D(\lambda \tilde{a}, \mu \tilde{a}) \leq |\lambda - \mu| \max\{|t| : t \in \text{supp} \tilde{a}\}$$

$$D(\tilde{a} - \tilde{b}, \tilde{c} - \tilde{b}) = D(\tilde{a}, \tilde{c})$$

Lemma 2. Let
$$\tilde{\mathbf{a}}_{i,j}$$
, $\tilde{\mathbf{b}}_i \in \mathcal{F} \cap \operatorname{Lip}(\mathbf{L})$ and $\mathbf{x} = (\mathbf{x}_1, \dots \mathbf{x}_n) \in \mathbf{R}^n$. Then
$$\tilde{\mathbf{a}}_{i,1} \mathbf{x}_1 + \dots + \tilde{\mathbf{a}}_{i,n} \mathbf{x}_n - \tilde{\mathbf{b}}_i \in \mathcal{F} \cap \operatorname{Lip}\left(\frac{\mathbf{L}}{\|\mathbf{x}\|_1 + 1}\right).$$

Lemma 3. Let \tilde{a} , $\tilde{b} \in \mathcal{F} \cap \text{Lip}(L)$ and $\delta \ge 0$. If $D(\tilde{a}, \tilde{b}) \le \delta$, then $\sup_{t \in \mathbf{R}} |\tilde{a}(t) - \tilde{b}(t)| \le L\delta$

In many important cases instead of exact fuzzy numbers \tilde{a}_{ij} , \tilde{b}_i in (1) only their approximations \tilde{a}_{ij}^{δ} , \tilde{b}_i^{δ} are known [4], such that

$$D(\tilde{a}_{i,j},\tilde{a}_{i,j}^{\delta}) \leq \delta$$
, $D(\tilde{b}_{i},\tilde{b}_{i}^{\delta}) \leq \delta$, (3)

Then we get the following so-called perturbed system

$$\tilde{\mathbf{a}}_{i1}^{\delta} \mathbf{x}_{1} + \ldots + \tilde{\mathbf{a}}_{ii}^{\delta} \mathbf{x}_{n} * \tilde{\mathbf{b}}_{i}^{\delta} , i=1,\ldots,m$$
 (4)

We denote the solution, the measure of consistency and the

maximizing solution of the system (4) by μ^{δ} , $\mu^{*}(\delta)$ and $x^{*}(\delta)$ respectively.

The following theorem shows that a small perturbation (in metric D) of the fuzzy parameters $\tilde{a}_{i,j}$, $\tilde{b}_i \in \mathcal{F} \cap Lip(L)$ may cause only a

Theorem 2. Let $\tilde{a}_{i,j}$, \tilde{b}_{i} , $\tilde{a}_{i,j}^{\delta}$, $\tilde{b}_{i}^{\delta} \in \mathcal{F} \cap Lip(L)$. If (3) holds, then

$$\|\mu - \mu^{\delta}\|_{C} = \sup_{\mathbf{x} \in \mathbb{R}^{n}} |\mu(\mathbf{x}) - \mu^{\delta}(\mathbf{x})| \le L\delta$$

small deviation in the solution.

$$|\mu^* - \mu^*(\delta)| \leq L\delta.$$

The proof of this theorem is based on the above-mentioned lemmas.

QUESTION 1. Does continuity of fuzzy numbers in system (1) imply the continuity of solution μ ?

QUESTION 2. Will the solution μ be continuous in the case of non compactely-supported Lipschitzian fuzzy numbers ?

QUESTION 3. Does the solution μ have the stability property if the fuzzy parameters are continuous ?

QUESTION 4. Will the maximizing solution x^* be stable under small variations (in metric C) in the membership functions of the Lipschitzian fuzzy numbers?

3. Numerical example.

Consider the following classical systems of linear inequalities original system perturbed system

The solution of the original system is $x_1^{opt} = x_2^{opt} = 2$ and the perturbed system has no solution for every $\delta > 0$.

Consider now the above systems with triangular fuzzy numbers original system perturbed system

Using the above notations we get

$$\mu^* = 1,$$
 $\mu^*(\delta) = 1 - \frac{\delta}{\alpha} \cdot \frac{4}{10 + \delta},$ $x_1^* = x_2^* = 2,$ $x_1^*(\delta) = x_2^*(\delta) = \frac{4}{2 + \delta},$

80

$$x_1^*(\delta) \rightarrow x_1^* = x_1^{opt}, \quad x_2^*(\delta) \rightarrow x_2^* = x_2^{opt} \text{ as } \delta \rightarrow 0.$$
 (6)

Remark. From (6) it follows that the fuzzification of the classical problem (5) can be considered as a "regularized" formulation of the classical problem (5) /i.e. we get a so-called self-reguralization method for solving the instable problem (5)/.

References

- [1] Bellman, R.A. and Zadeh L.A., Decision-making in a fuzzy environment, Manage. Sci. 17, B141, 1970.
- [2] Dubois, D. and Prade, H. System of linear fuzzy constraints. Fuzzy Sets and Systems, 3(1980), 37-48.
- [3] Kovács M. and Fuller R., On solution of fuzzified equality and inequality systems. In: Actual problems of applied mathematics. Moscow State University, (to appear, in russian).
- [4] H.Tanaka, H.Ichihashi and K.Asai, A value of information in FLP problems via sensitivity analysis, Fuzzy Sets and Systems, 18(1986),119-129.
- [5] Zadeh, L.A. Fuzzy sets as a basis for theory of possibility, Memo UCB/ERL M77/12, Univ. of California, Berkeley, 1977.