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Abstract

In this paper we discuss the algebraic structure of
symmetrical fuzzy numbers assuming that they are mappings
from R! to a lattice ordered monoid, particularly to a
positive or a negative cone. Using a special ordering on
the set of fuzzy numbers and introducing a new extension
principle of binary algebraic operations we obtain

different structural properties of these fuzzy numbers.
1. Preliminaries

Let M be denote a complete lattice ordered commutative
monoid (c.l.0.c.m) with zero ([1],[3]), i.e.
Ml1: M is a semigroup with a commutative binary
operation ¥ ;
M2: M contains an identity e ;
M3: M is lattice ordered under its partial order =
with the least element O and the greatest
element 1 , i.e. M = [O,1];
M4: for all aa,b EM, a € 4 :
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vV a £t b= Vv (a, x*b).
[aéd “] aEd a

M5: the semigroup M contains a zero 9.
It is easy to see, that * is nondecreasing in both
variables, i.e. a4 = a, and b1 = b2 imply a4 X b1§a2 X bZ'
From this follows that the negative cone

[Oy,e] = { aEM: O £ a = e}

is a c.l.0.c.m. with zero 6 O, and the positive cone

[e,1] = { a EM: e = 8 11}

1A

is a c.l.0.c.m. with zero 8 = 1,

We will say that the operation % is a t-norm on M if the
identity of the monoid (M,%*,e) is the greatest element of
M, i.e. e = 1. In this case M = [O,1] is the negative cone
and O = 6. If we wish to emphasize that the semigroup
operation is a t-norm than we will use + instead of x.
Particularly, it is possible that *¥z=vz=A.

Dually, the semigroup operation % will be called t-conorm
on M if the identity of the monoid (M,*,e) is the least
element of M, i.e. ¢ = O . In this case M = [O,1] is the
positive cone and 1 = 0. If we want to refer only to
t-conorms we will use the notion + instead of % .
Particularly it is possible that *=z.zVv, If we say that M is
a ¥-cone, we understand that it is either a negative cone
defined by a t-norm, or a positive cone defined by a
t-conorm. In the sequel it will be supposed that M is a

¥-cone. If a set M possesses both cone-structures then

A
HA

aThb aAb a Vb
and
aAb=aVvVb=a+b.
We remark that in the case M = [{0,1] C R! the given t-norm
and t-conorm definitions coincide with the usual ones

([51,[61).
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Let X and Y be two spaces and let be given a mapping

P : X —> Y.Then the triplet (X,p,Y) is called a fibre

bundle on Y. Here X is the fibre space, Y is the basis of

the fibre bundle and p_l(y) is a bundle on y, where
pl(y) = (x €X : p(x) =y, vy € Y}.

Note that for every Y1152 €Y

n
]

p Ny np lyy)
whenever ¥y # Yo-

2. The fibre bundle of symmetrical M-fuzzy numbers on R!

Let M = ([O,1]1,%,e,0,A,V) be a ¥ - cone. Introduce the
following definitions:

Definition 2.1. A mapping fo : Rl =3 M will be called a

finite symmetrical M-fuzzy number on zero if

Fgol: fO(O) = 1 ;
FOZ: fo(x) = fo(—x) for every x € R1!
F03: fo(x) z fo(y) if x =y, x,y € [0,0) ;

Fg4: top f, = cl { x € R : fo(x) = 1 } is bounded.
(Here cl denotes the closure of the set).
The set of all finite symmetrical M-fuzzy numbers on zero
will be denoted by QO’
Definition 2.2. Let a € R!. A mapping f, : R! — M is
called a finite symmetrical M-fuzzy number on a iff the
mapping
Rt — M
X —— fa(x+a)

is an element of 30.80 the finite symmetrical M-fuzzy
numbers can be represented by a pair (f,a), where f € %01
a € Ry,
The set of all finite symmetrical M-fuzzy numbers on a will
be denoted by ga’ and the set of all finite symmetrical
M-fuzzy numbers on R! will be denoted by QR. We have
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Fn = U F_.
R acr1 @2

From the given definitions immediately follows the

Proposition 2.3. A mapping f : R! —>» M belongs to ﬁR if

and only if sup(top f) - inf(top f) < = and there exists
a € R! such that
i) f(a) = 1 ;

ii) f(a - x) = f(a + x) for every x € R! ;

#

iii) f(x) z f(y) if x £ y, x,y € [a,=»).
Here a is8 uniquely defined by
a = [inf(top f) + sup(top f)1/2.
The real number a € R! defined in the Proposition 2.3 is
called the center of f € n and we write a = cent f.
It is easy to see that the characteristic function of a
1, if x = a
Xa(x) = { )
O, if x # a
belongs to ¥, C r-
Let us join to Qa the infinite fuzzy number €a given by the
pair (€,a), where
€(x) = 1 for all x € R ,
Formally we say that €q igs generated by €, cent €g = 8 and
we distinquish €, and €y if a # b,
In the sequel if we write fa we wish to emphasize that the
index a is the center of the fuzzy number created by the
function f. Note these given definitions correspond to [2].
Let denote ¥, = % U {e,} and 3 = agRl %, Then the
following statements are valid:

Corollary 2.4.
i) If a # b then gﬁ N 35 =@ ;
ii) If f,g € gh and f = g then cent f = cent g.

Corollary 2.5. ?R = (yh,p,Rl) is a fibre bundle on R!,
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where p : ¥ —> R! is the projection g @ f—cent f € R!,

and 7a = p'l(a) C 3R is the bundle on a € R!.

Let us introduce the following operations for all f,g € ya:
(f Ap, 8)(x) = f(x) A g(x) (2.1)
(f Vg, 8)(x) f(x) VvV g(x) (2.2)
(f *p. 8)(x) = £(x) ¥ g(x) (2.3)

for every x € R!.

Proposition 2.6. 3; = ([xa’ea]'*F.’ea’xa’AF.’vFa) is a

*Fa - cone.

Proof. From the definitions (2.1)-(2.3) follows that ya is

complete lattice ordered.It is easy to verify that Xa is

the least and €a is the greatest element of 35, €a is TF, "
unity, and Xg is Tp, ~ 2Z€ro, €, 1is 4p, - 2zero element and
Xg is i unity. Consequently, if ¥ = T then [xa,ea] is
the negative cone and if % = . then [Xa,ea] is the positive

cone. -

In yk we define the relation éFa as follows:

Definition 2.7. For every pair f,g € yh f Sp, 8 iff one of
the following conditions is satisfied:
i) cent f < cent g ;
ii) cent f = cent g and f(x) = g(x) for every x € R!.
Using the terminology of the corollaries 2.4. and 2.5. this
definition is equivalent to the following one:

Definition 2.7.% Let the ordering relation éF. within each

bundle ?5, a € R! be the same as originally given in ?a,
furthermore put f < g if f € ¥, , g € %,, and a < b.

Proposition 2.8, (§R,§FR) is lattice ordered.
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Proof. Since 3; and R! are partial ordered, the relation

éFn on yh is really a partial order. This ordering

generates the lattice operations as follows: Let the

lattice operations within each bundle yﬁ , &8 € R be given
by (2.1) - (2.2), i.e. if cent f = cent g = a then

(f Ap, B)(X) = (f Ap_ &) (x) = £(x) A g(x) ,

(f Vg, 8)(x) = (f vg_ g)(x) = f(x) VvV g(x)

n
1]

L]
L]

for every x € R!, and if f € ya , £ € 35 and a < b, then
f /\FR g =f and f VFn £ = £. [ ]
Remarks 2.9.

i) (%5, §Fn) is not complete;

ii) (%,, éFR) ig not linearly ordered.
iii) Let f : [0,1] =—> M be a fixed monoton decreasing
mapping such that f(0) = 1, f(1)

O . Let us consider th

class §A of parametrical mappings

1, if x 2= a and d = 0 or for all x if d =
|x - aj .
fa,d(x) = f ———E——— y if |x - a] £d, 0 < d < o

O, otherwise.
fa,d € 72 will be called quasi-triangular fuzzy number
([4]) with the center a and the width d. Then (Fa,éF‘) is
linearly ordered subsystem of (% ’éFn)'

3. ¥ - extension of binary real operations to FR

Let o be a binary real operation on R:, ¥ be a t-norm or

t-conorm on M, f,g € ¥,, and a = cent f, b = cent g.

e

®

a
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(%)
Definition 3.1. The ¥ - extension o of the binary
operation ¢ to yh is given by

(%)
(f o g)(x) = f(x +a - (aob)) ¥ g{(x +b - (acb)),
x € R, (3.1)
Examples 3.2. The * - extended additive and multiplicative

operations are defined by
(%)
(f + g)(x) = f(x - b) ¥ g(x - a) ,
(x)

(f o g)(x) = f(x + a -~ asb) ¥ g(x + b - a+b) .

Proposition 3.3. ?ﬁ is closed for the ¥ - extended binary

(z)
operations, i.e. f,g € ?h implies f o g € ?h, and

(%)

cent (f o g) = (cent f) o (cent g).

Proof. Let f,g € 3R be finite symmetrical fuzzy numbers
with a = cent f , b = cent g . It is easy to check, that

the conditions i - iii) of the Proposition 2.3. are

(%) (%)
satisfied for f o g and top f o g is connected, so

either it belongs to ¥, or their graph is ¢ .Let now

f =¢,, 8 € gﬁ. Then

(¢, o &)(x) =g(x +b-(aob) €F o, CF. ™

Corollary 3.4. If fa,gb € ﬁh are generated by f and g with

the center a and b , respectively, then

(%) _
fa ° &y = faOb * €a0b®

Proposition 3.5. If (R*,0,=) is a partial ordered

commutative semigroup with the natural order =, then

. (%)
(5R, o ,éFR) ig a lattice ordered commutative semigroup.

Proof. Using that o and ¥ are commutative and associative



o
=2

(%)
we can easily verify that the ¥ - extended o operation on

(x)
3R is also commutative and associative, therefore (%5, o )
is a commutative semigroup.

Assume now that f éFn g , i.e. f VFR £ g. Then

(x) (%)
(f \/FR g€) o h=g o h.

(%)
Furthermore we know that cent(f o h) a o ¢ and

(%)
cent (g o h) = b o c . If a =b then a o ¢ £ b o ¢ and
therefore we obtain for the right hand side that

(x) (%) (%)
(f 'o" h) Vg, (8 o h) = (g o h).
If a = b then a o ¢ = b o ¢ and f(x) £ g(x) for all x € R,

Using the monotonity of * we have that
(%)
(f o h)(x) = f(x + a - (a o c)) ¥ h(ix + ¢ - (a o ¢c)) =

(%)
= g(x +a - (aoc)) ¥x hix + c (a oc)) = (g o h)(x).m
Proposition 3.6, Let (Rt,0,j) is a monoid with the neutral

)

(
element j. Then (¥, o ,ej) is a monoid with the neutral

+)
element ej, and (%,, o ,Xj) is a monoid with the neutral
element Xj.
Proof. It is trivial. ]
) +) )
COI‘OllaI‘y 3.7. (yR, + ,ﬁo), (y ] + ,XO)’ (g ] * ’61) ﬂ.nd

(+)
(F,, o ,Xl) are lattice ordered monoids.

4. Digtributivity of * - extended operations

Let A = (Rt,B) be an algebraic system on R:, where B

denotes the set of the commutative and associative binary

operations defined on R! and let Ap = (?R,B(*)) be an
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algebraic system on %,, where B(*) ig the set of the ¥ -
extended binary operations of B,

Proposition 4.1. Let - € B and 0 € B be distributive

operations on R! and ¥ is an idempotent t-norm or t-conorm
(%) (x)
on M. Then the % - extended operations c and 0O on ER
are also distributive.
Proof. Let cent f = a, cent g = b and cent h = ¢ . Then
(%) (%)
[f o (g o h)l(x) =
(%)
= f(x+a-[{ao(boc)l)*¥(g 0O h)(x+(boc)-[ao(bnc)]) =

= f(x+a-[ao(boc)])¥g(x+b-[ao(boc)])*h(x+c-[ac(bac)]).

On the other hand using that f ¥ f = f we obtain that

(£ s’ g) 8 (£ B)Ix) =
(%) (%)
=(f o g)(x+(aocb)-[(acb)o(acc)])*(f o h)(x+[(acb)o(acc)])=
=f(x+a-[ao(boc)])*g(x+b-[ao(boc)])*f(x+a-{ac(bac)])x*
*h(x+c-[ao(boc)])=
=f(x+a-[ac(boc)])*g(x+b-[ac(bac)] )% h(x+c-[aoc(buc)]). RN

(%) (%) (%) (x) (%)
Corollary 4.2. (f + g) ¢ h=(f e« h) + (g + h).

Let 7 denote a set of the commutative binary operations on
M such that M = ([O,1],%,e,6,A,V) is8 a ¥ - cone for every
x € 7T,

Let AT = {(¥$5,B(*)) be an algebraic system on gh, where B(+)
is the set of X - extended operations of B for every % € 7.

Proposition 4.3. Let c,0 €E B and %¥,# € v. If X and # are

distributive on M, and o and 0 distributive operations on

(%) (%)
R1, then o and 0 are also distributive on FR.

Proof. On the one hand

tf 5 (g ‘0] n)1(x) =
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= f(x+a—[a0(buc)])*(g(a)h)(x+(ch)—[a0(ch)]) =
= f(x+a-[aoc(boc)])*{g(x+b-[ac(boc)])#h(x+c-[ao(boc)])} =
= {f(x+a-[(acb)n(acc)])*g(x+b-[(acb)o(acc)])]} #
# {f(x+a-[(acb)o(acc)])*h(x+c-[(acb)o(acc)])}.
On the other hand

te 5 g) @l (g 9 m)Ix) =

=(f o g) (x+(aob)-[(acb)a(acc)]) #

# (£5 h) (x+(asc)-[(asb)o(asc)])
= {f(x+a-[(acb)o(aoc)])*g(x+b-[(acb)o(aoc)])} #
# {f(x+a-[(aob)o(acc)])*¥h(x+c~-[(aob)o(acc)]l)}. a
Corollary 4.4.

(x) v) (%) V) (x)
.

f (g + h) =(f « g) + (f < h)

References

[1] Birkhoff,G.: Lattice theory, Providence Rhode
Island, 1967.

[2] Dubois,D.,Prade,H.: Operations on fuzzy numbers,
Int.J.System 8ci.,9.,N°6,1978.,613-626.

[3] Fuchs,L.: Partially ordered algebraic systems,
Pergamon Press, 1963.

{4] Kovécs,M.: Fuzzy linear programming with triangular
fuzzy parameters. In:Proc. of the IASTED Intern.
Symp. Identification, modelling and simulation,
Paris, 1987. 447-451.

[6] Menger,K.: Statistical metrics, Proc.Nat.Acad.Sci.
Usa, 28.,1942.,535-537.

[6] Schweizer,B.,Sklar,A.: Associative functions and
statistical triangle inequalities, Publ.Math.

Debrecen,so ] 1967 LI 169-186 .



