ALGEBRAIC STRUCTURE OF SYMMETRICAL M - FUZZY NUMBERS

M. Kovács,

Computing Center, Eötvös Loránd University, Budapest, 112, Pf.157, H - 1502

Tran Lam Hach,

Center Enterprise for Organization of

Agriculture and Food Industry,

Budapest, Lajos u. 160/162, H - 1036

Abstract

In this paper we discuss the algebraic structure of symmetrical fuzzy numbers assuming that they are mappings from R¹ to a lattice ordered monoid, particularly to a positive or a negative cone. Using a special ordering on the set of fuzzy numbers and introducing a new extension principle of binary algebraic operations we obtain different structural properties of these fuzzy numbers.

1. Preliminaries

Let M be denote a complete lattice ordered commutative monoid (c.l.o.c.m) with zero ([1],[3]), i.e.

M1: M is a semigroup with a commutative binary
 operation *;

M2: M contains an identity e;

M3: M is lattice ordered under its partial order ≤
 with the least element O and the greatest
 element 1 , i.e. M = [O,1];

M4: for all a_{α} , $b \in M$, $\alpha \in A$:

$$\begin{bmatrix} \vee & \mathbf{a}_{\alpha} \\ \alpha \in \mathbf{A} \end{bmatrix} * \mathbf{b} = \bigvee_{\alpha \in \mathbf{A}} (\mathbf{a}_{\alpha} * \mathbf{b}).$$

M5: the semigroup M contains a zero θ . It is easy to see, that * is nondecreasing in both variables, i.e. $a_1 \le a_2$ and $b_1 \le b_2$ imply $a_1 * b_1 \le a_2 * b_2$. From this follows that the *negative cone*

 $[O,e] = \{ a \in M : O \leq a \leq e \}$

is a c.l.o.c.m. with zero $\theta = O$, and the positive cone

$$[e, 1] = \{ a \in M : e \leq a \leq 1 \}$$

is a c.l.o.c.m. with zero $\theta = 1$.

We will say that the operation * is a t-norm on M if the identity of the monoid (M, *, e) is the greatest element of M, i.e. e = 1. In this case M = [O, 1] is the negative cone and $O = \theta$. If we wish to emphasize that the semigroup operation is a t-norm than we will use τ instead of *. Particularly, it is possible that $*=\tau=\wedge$.

Dually, the semigroup operation * will be called t-conorm on M if the identity of the monoid (M,*,e) is the least element of M, i.e. e = O. In this case M = [O,1] is the positive cone and $1 = \theta$. If we want to refer only to t-conorms we will use the notion \bot instead of *.

Particularly it is possible that *===>. If we say that M is a *-cone, we understand that it is either a negative cone defined by a t-norm, or a positive cone defined by a t-conorm. In the sequel it will be supposed that M is a *-cone. If a set M possesses both cone-structures then

$$a + b \le a \wedge b \le a \vee b$$

and

$$a \wedge b \leq a \vee b \leq a + b$$
.

We remark that in the case $M = [0,1] \subset \mathbb{R}^1$ the given t-norm and t-conorm definitions coincide with the usual ones ([5],[6]).

Let X and Y be two spaces and let be given a mapping $p: X \longrightarrow Y$. Then the triplet (X,p,Y) is called a fibre bundle on Y. Here X is the fibre space, Y is the basis of the fibre bundle and $p^{-1}(y)$ is a bundle on y, where

$$p^{-1}(y) = \{x \in X : p(x) = y , y \in Y\}.$$

Note that for every $y_1, y_2 \in Y$

$$p^{-1}(y_1) \cap p^{-1}(y_2) = \emptyset$$

whenever $y_1 \neq y_2$.

2. The fibre bundle of symmetrical M-fuzzy numbers on R1

Let $M = ([O, 1], *, e, \theta, \land, \lor)$ be a * - cone. Introduce the following definitions:

<u>Definition 2.1.</u> A mapping $f_0: \mathbb{R}^1 \longrightarrow M$ will be called a finite symmetrical M-fuzzy number on zero if

 $F_01: f_0(0) = 1;$

 F_0^2 : $f_0(x) = f_0(-x)$ for every $x \in R^1$;

 $F_03: f_0(x) \ge f_0(y) \text{ if } x \le y, x,y \in [0,\infty);$

 F_04 : top $f_0 = cl \{ x \in R^1 : f_0(x) = 1 \}$ is bounded. (Here cl denotes the closure of the set).

The set of all finite symmetrical M-fuzzy numbers on zero will be denoted by \mathcal{F}_0 .

<u>Definition 2.2.</u> Let $a \in \mathbb{R}^1$. A mapping $f_a : \mathbb{R}^1 \longrightarrow M$ is called a *finite symmetrical M-fuzzy number on* a iff the mapping

$$\begin{array}{c} R^1 \longrightarrow M \\ x \longrightarrow f_a(x+a) \end{array}$$

is an element of \mathcal{F}_0 . So the finite symmetrical M-fuzzy numbers can be represented by a pair (f,a), where $f \in \mathcal{F}_0$, $a \in \mathbb{R}^1$.

The set of all finite symmetrical M-fuzzy numbers on a will be denoted by \mathcal{F}_a , and the set of all finite symmetrical M-fuzzy numbers on \mathbb{R}^1 will be denoted by \mathcal{F}_R . We have

$$\mathcal{F}_{\mathbf{R}} = \bigcup_{\mathbf{a} \in \mathbf{R}^1} \mathcal{F}_{\mathbf{a}}.$$

From the given definitions immediately follows the <u>Proposition 2.3.</u> A mapping $f: R^1 \longrightarrow M$ belongs to \mathcal{F}_R if and only if $\sup(\text{top } f) - \inf(\text{top } f) < \infty$ and there exists $a \in R^1$ such that

- i) f(a) = 1 ;
- ii) f(a x) = f(a + x) for every $x \in \mathbb{R}^1$;
- iii) $f(x) \ge f(y)$ if $x \le y$, $x,y \in [a,\infty)$.

Here a is uniquely defined by

$$a = [inf(top f) + sup(top f)]/2.$$

The real number $a \in \mathbb{R}^1$ defined in the Proposition 2.3 is called the *center* of $f \in \mathcal{F}_R$ and we write a = cent f. It is easy to see that the *characteristic function of a*

$$x_{\mathbf{a}}(\mathbf{x}) = \begin{cases} \mathbf{1}, & \text{if } \mathbf{x} = \mathbf{a} \\ \mathbf{O}, & \text{if } \mathbf{x} \neq \mathbf{a} \end{cases}$$

belongs to $\mathcal{F}_{\mathbf{a}} \subset \mathcal{F}_{\mathbf{R}}$.

Let us join to \mathcal{F}_a the infinite fuzzy number ϵ_a given by the pair (ϵ, a) , where

$$\epsilon(x) = 1$$
 for all $x \in \mathbb{R}^1$.

Formally we say that ϵ_a is generated by ϵ , cent ϵ_a = a and we distinquish ϵ_a and ϵ_b if a \neq b.

In the sequel if we write f_a we wish to emphasize that the index a is the center of the fuzzy number created by the function f. Note these given definitions correspond to [2].

Let denote $\overline{s}_a = s_a \cup \{\epsilon_a\}$ and $\overline{s}_R = \bigcup_{a \in R^1} \overline{s}_a$. Then the following statements are valid:

Corollary 2.4.

- i) If $a \neq b$ then $\overline{\mathcal{F}}_a \cap \overline{\mathcal{F}}_b = \emptyset$;
- ii) If $f,g \in \overline{\mathcal{F}}_R$ and f = g then cent f = cent g.

 Corollary 2.5. $\overline{\mathcal{F}}_R = (\overline{\mathcal{F}}_R, p, R^1)$ is a fibre bundle on R^1 ,

where $p: \overline{\mathcal{F}}_R \longrightarrow \mathbb{R}^1$ is the projection $\overline{\mathcal{F}}_R \ni f \longrightarrow cent f \in \mathbb{R}^1$, and $\overline{\mathcal{F}}_R = p^{-1}(a) \subset \overline{\mathcal{F}}_R$ is the bundle on $a \in \mathbb{R}^1$.

Let us introduce the following operations for all $f,g \in \overline{F}_a$:

$$(f \wedge_{F_n} g)(x) = f(x) \wedge g(x) \qquad (2.1)$$

$$(f \lor_{F_n} g)(x) = f(x) \lor g(x)$$
 (2.2)

$$(f *_{F_n} g)(x) = f(x) * g(x)$$
 (2.3)

for every $x \in \mathbb{R}^1$.

<u>Proposition 2.6.</u> $\overline{\mathcal{F}}_{\mathbf{a}} = ([\chi_{\mathbf{a}}, \epsilon_{\mathbf{a}}], *_{\mathbf{F}_{\mathbf{a}}}, \epsilon_{\mathbf{a}}, \chi_{\mathbf{a}}, \wedge_{\mathbf{F}_{\mathbf{a}}}, \vee_{\mathbf{F}_{\mathbf{a}}})$ is a $*_{\mathbf{F}_{\mathbf{a}}} - \text{cone.}$

<u>Proof.</u> From the definitions (2.1)-(2.3) follows that \overline{s}_a is complete lattice ordered. It is easy to verify that x_a is

the least and ϵ_a is the greatest element of \overline{s}_a , ϵ_a is τ_{F_a} - unity, and x_a is τ_{F_a} - zero, ϵ_a is τ_{F_a} - zero element and x_a is τ_{F_a} - unity. Consequently, if * = τ then $[x_a, \epsilon_a]$ is the negative cone and if * = τ then $[x_a, \epsilon_a]$ is the positive cone.

In $\mathbf{F}_{\mathbf{R}}$ we define the relation $\mathbf{F}_{\mathbf{F}_{\mathbf{R}}}$ as follows:

<u>Definition 2.7.</u> For every pair $f,g \in \overline{\mathcal{F}}_R$ $f \leq_{F_R} g$ iff one of the following conditions is satisfied:

- i) cent f < cent g;
- ii) cent f = cent g and $f(x) \le g(x)$ for every $x \in R^1$. Using the terminology of the corollaries 2.4. and 2.5. this definition is equivalent to the following one:

<u>Definition 2.7.</u>* Let the ordering relation $\leq_{\mathbf{F}_{\mathbf{R}}}$ within each

bundle $\overline{\mathcal{F}}_a$, $a \in \mathbb{R}^1$ be the same as originally given in $\overline{\mathcal{F}}_a$,

furthermore put f < g if $f \in \overline{\mathcal{F}}_a$, $g \in \overline{\mathcal{F}}_b$ and a < b.

<u>Proposition 2.8.</u> $(\overline{\mathcal{F}}_{R}, \underline{\leq}_{F_{R}})$ is lattice ordered.

<u>Proof.</u> Since \overline{s}_a and R^1 are partial ordered, the relation \leq_{F_R} on \overline{s}_R is really a partial order. This ordering generates the lattice operations as follows: Let the

lattice operations within each bundle \overline{F}_a , $a \in \mathbb{R}^1$ be given by (2.1) - (2.2), i.e. if cent f = cent g = a then

$$(f \wedge_{F_R} g)(x) = (f \wedge_{F_R} g)(x) = f(x) \wedge g(x)$$
,

$$(f \lor_{F_R} g)(x) = (f \lor_{F_a} g)(x) = f(x) \lor g(x)$$

for every $x \in R^1$, and if $f \in \mathcal{F}_a$, $g \in \mathcal{F}_b$ and a < b, then $f \wedge_{F_R} g = f \text{ and } f \vee_{F_R} g = g.$

- i) $(\overline{\mathcal{J}}_{R}, \leq_{F_{R}})$ is not complete;
- ii) (\mathfrak{F}_{R} , $\leq_{F_{R}}$) is not linearly ordered.
- iii) Let $f:[0,1] \longrightarrow M$ be a fixed monoton decreasing mapping such that f(0) = 1, f(1) = O. Let us consider the class \overline{s}_A of parametrical mappings

$$f_{a,d}(x) = \begin{cases} 1, & \text{if } x = a \text{ and } d = 0 \text{ or for all } x \text{ if } d = \infty \\ f\left(\frac{|x-a|}{d}\right), & \text{if } |x-a| \le d, 0 < d < \infty \end{cases}$$

$$O, & \text{otherwise.}$$

 $f_{a,d} \in \mathcal{F}_{\Delta}$ will be called quasi-triangular fuzzy number ([4]) with the center a and the width d. Then $(\mathcal{F}_{\Delta}, \leq_{F_R})$ is a linearly ordered subsystem of $(\mathcal{F}_R, \leq_{F_R})$.

3. * - extension of binary real operations to $\overline{\mathcal{I}}_R$

Let \circ be a binary real operation on R^1 , * be a t-norm or t-conorm on M, f,g $\in \overline{\mathcal{F}}_R$, and a = cent f, b = cent g.

<u>Definition 3.1.</u> The * - extension $\stackrel{(*)}{\circ}$ of the binary operation \circ to $\overline{\mathcal{I}}_R$ is given by

$$(f \circ g)(x) = f(x + a - (a \circ b)) * g(x + b - (a \circ b)),$$

 $x \in R^{1}.$ (3.1)

Examples 3.2. The * - extended additive and multiplicative operations are defined by

$$(f + g)(x) = f(x - b) * g(x - a),$$

 $(f * g)(x) = f(x + a - a * b) * g(x + b - a * b).$

<u>Proposition 3.3.</u> $\overline{\mathcal{I}}_R$ is closed for the * - extended binary operations, i.e. $f,g\in\overline{\mathcal{I}}_R$ implies $f\stackrel{(*)}{\circ} g\in\overline{\mathcal{I}}_R$, and cent $(f\stackrel{(*)}{\circ} g) = (\text{cent } f) \circ (\text{cent } g)$.

<u>Proof.</u> Let $f,g \in \mathcal{F}_R$ be finite symmetrical fuzzy numbers with a = cent f , b = cent g . It is easy to check, that the conditions i - iii) of the Proposition 2.3. are

satisfied for $f \stackrel{(*)}{\circ} g$ and top $f \stackrel{(*)}{\circ} g$ is connected, so either it belongs to \mathcal{F}_R or their graph is ϵ .Let now

$$f = \epsilon_a$$
, $g \in \mathcal{F}_R$. Then

$$(\epsilon_{\mathbf{a}} \circ \mathbf{g})(\mathbf{x}) = \mathbf{g}(\mathbf{x} + \mathbf{b} - (\mathbf{a} \circ \mathbf{b})) \in \mathcal{F}_{\mathbf{a} \circ \mathbf{b}} \subset \overline{\mathcal{F}}_{\mathbf{R}}.$$

Corollary 3.4. If $f_a, g_b \in \overline{\mathcal{I}}_R$ are generated by f and g with the center a and b, respectively, then

$$f_a \overset{(*)}{\circ} g_b = f_{a \circ b} * g_{a \circ b}$$

<u>Proposition 3.5.</u> If (R^1, \circ, \leq) is a partial ordered commutative semigroup with the natural order \leq , then

 $(\overline{\mathcal{F}}_R, \circ, \leq_{F_R})$ is a lattice ordered commutative semigroup. <u>Proof.</u> Using that \circ and * are commutative and associative we can easily verify that the * - extended $\overset{(*)}{\circ}$ operation on \mathcal{F}_R is also commutative and associative, therefore $(\mathcal{F}_R,\overset{(*)}{\circ})$ is a commutative semigroup.

Assume now that $f \leq_{F_R} g$, i.e. $f \vee_{F_R} g = g$. Then $(f \vee_{F_R} g) \stackrel{(*)}{\circ} h = g \stackrel{(*)}{\circ} h .$

Furthermore we know that $cent(f \circ h) = a \circ c$ and $cent(g \circ h) = b \circ c$. If $a \le b$ then $a \circ c \le b \circ c$ and therefore we obtain for the right hand side that

 $(f \stackrel{(*)}{\circ} h) \vee_{F_R} (g \stackrel{(*)}{\circ} h) = (g \stackrel{(*)}{\circ} h).$

If a = b then a \circ c = b \circ c and $f(x) \le g(x)$ for all $x \in R^1$. Using the monotonity of * we have that

 $(f \overset{(*)}{\circ} h)(x) = f(x + a - (a \circ c)) * h(x + c - (a \circ c)) \leq$ $\leq g(x + a - (a \circ c)) * h(x + c (a \circ c)) = (g \overset{(*)}{\circ} h)(x). \blacksquare$ $\underline{Proposition \ 3.6.} \ \text{Let} \ (\mathbb{R}^1, \circ, j) \ \text{is a monoid with the neutral}$ $\text{element } j. \ \text{Then} \ (\overline{\mathcal{F}}_{\mathbb{R}}, \overset{(-)}{\circ}, \epsilon_j) \ \text{is a monoid with the neutral}$ $\text{element } \epsilon_j, \ \text{and} \ (\overline{\mathcal{F}}_{\mathbb{R}}, \overset{(-)}{\circ}, \chi_j) \ \text{is a monoid with the neutral}$ $\text{element } \chi_j.$

Proof. It is trivial.

4. Distributivity of * - extended operations

Let $A = (R^1, B)$ be an algebraic system on R^1 , where B denotes the set of the commutative and associative binary operations defined on R^1 and let $A_F = (\mathcal{F}_R, B^{(*)})$ be an

algebraic system on $\overline{\mathcal{I}}_R$, where B(*) is the set of the *-extended binary operations of B.

<u>Proposition 4.1.</u> Let $\circ \in B$ and $\square \in B$ be distributive operations on R^1 and * is an idempotent t-norm or t-conorm on M. Then the * - extended operations $\stackrel{(*)}{\circ}$ and $\stackrel{(*)}{\square}$ on \mathcal{F}_R are also distributive.

Proof. Let cent f = a, cent g = b and cent h = c. Then

$$[f \circ (g \cap h)](x) =$$

= $f(x+a-[a\circ(b\Box c)])*(g^{(*)}h)(x+(b\Box c)-[a\circ(b\Box c)]) =$ = $f(x+a-[a\circ(b\Box c)])*g(x+b-[a\circ(b\Box c)])*h(x+c-[a\circ(b\Box c)]).$

On the other hand using that f * f = f we obtain that

$$[(f \circ g) \cap (f \circ h)](x) =$$

 $= (f \circ g)(x+(a\circ b)-[(a\circ b)\Box(a\circ c)])*(f \circ h)(x+[(a\circ b)\Box(a\circ c)]) =$ $= f(x+a-[a\circ (b\Box c)])*g(x+b-[a\circ (b\Box c)])*f(x+a-[a\circ (b\Box c)])*$ $*h(x+c-[a\circ (b\Box c)]) =$

 $= f(x+a-[a\circ(b\Box c)])*g(x+b-[a\circ(b\Box c)])*h(x+c-[a\circ(b\Box c)]).$

Corollary 4.2. (f $\stackrel{(*)}{+}$ g) $\stackrel{(*)}{\bullet}$ h=(f $\stackrel{(*)}{\bullet}$ h) $\stackrel{(*)}{+}$ (g $\stackrel{(*)}{\bullet}$ h). Let τ denote a set of the commutative binary operations on M such that M = ([O,1],*,e, θ , \wedge , \vee) is a * - cone for every * $\in \tau$.

Let $A_{\tau} = (\overline{s}_{R}, B^{(\tau)})$ be an algebraic system on \overline{s}_{R} , where $B^{(\tau)}$ is the set of * - extended operations of B for every * $\in \tau$. Proposition 4.3. Let \circ , $\square \in B$ and *, $\# \in \tau$. If * and # are distributive on M, and \circ and \square distributive operations on

 \mathbb{R}^1 , then $\overset{(*)}{\circ}$ and $\overset{(*)}{\square}$ are also distributive on $\overline{\mathcal{I}}_{\mathbb{R}}$. <u>Proof.</u> On the one hand

$$[f \circ (g \cap h)](x) =$$

```
= f(x+a-[a∘(b□c)])*(g<sup>(*)</sup>h)(x+(b□c)-[a∘(b□c)]) =
= f(x+a-[a∘(b□c)])*{g(x+b-[a∘(b□c)])*h(x+c-[a∘(b□c)])} =
= {f(x+a-[(a∘b)□(a∘c)])*g(x+b-[(a∘b)□(a∘c)])} #

# {f(x+a-[(a∘b)□(a∘c)])*h(x+c-[(a∘b)□(a∘c)])}.
On the other hand

[(f o g) □ (f o h)](x) =
= (f o g)(x+(a∘b)-[(a∘b)□(a∘c)]) #

# (f o h)(x+(a∘c)-[(a∘b)□(a∘c)])
= {f(x+a-[(a∘b)□(a∘c)])*g(x+b-[(a∘b)□(a∘c)])} #

# {f(x+a-[(a∘b)□(a∘c)])*h(x+c-[(a∘b)□(a∘c)])}.
Corollary 4.4.

[(*) (g + h) = (f o g) + (f o h)
```

References

- [1] Birkhoff, G.: Lattice theory, Providence Rhode Island, 1967.
- [2] Dubois, D., Prade, H.: Operations on fuzzy numbers, Int. J. System Sci., 9., No6, 1978., 613-626.
- [3] Fuchs, L.: Partially ordered algebraic systems, Pergamon Press, 1963.
- [4] Kovács, M.: Fuzzy linear programming with triangular fuzzy parameters. In: Proc. of the IASTED Intern. Symp. Identification, modelling and simulation, Paris, 1987. 447-451.
- [5] Menger, K.: Statistical metrics, Proc. Nat. Acad. Sci. USA, 28., 1942., 535-537.
- [6] Schweizer, B., Sklar, A.: Associative functions and statistical triangle inequalities, Publ. Math. Debrecen, 8., 1967., 169-186.