ON AN INTEGRAL OF FUZZY FUNCTIONS

Anna Paruleková Eva Rybáriková-Drobná

TECHNICAL UNIVERSITY

Vrbická 1944,031 01 Liptovský Mikuláš CZECHOSLOVAKIA

In recent years the mathematic literature has been bringing approaches to fuzzy integral construction. The Polish mathematician Marian Matkoka in paper [1] generalized the theory of Riemann integral for fuzzy mapping, i.e. mapping with values in the set of fuzzy numbers. The paper deals with generalizing of Kurzweil integral for such a fuzzy mapping.

The book [2] describes Kurzweil theory of integral in great detail. Here we only introduce briefly the definition of integral in the Kurzweil sense.

Let $f:[a,b]\to R$ be a real function and $D=\{(E_i,x_i),i=1,...,n\}$ be such a partition of [a,b] that $x_i\in E_i,E_i(i=1,...,n)$ are compact subintervals of [a,b] such that Int $E_i\cap I$ int $E_j=\emptyset$ for $i\neq j(i,j=1,...,n)$ and $i\bigvee_{i=1}^n E_i=[a,b]$. The integral sum of f for the partition D have the form

$$S(f,D) = \sum_{i=1}^{n} f(x_i) \lambda(E_i)$$
 (1)

where λ is the Lebesgue measure.

Let $\Delta: [a,b] \longrightarrow (0,\infty)$ be a function. A convenient partition of [a,b] with respect to Δ is such a partition D that

$$E_{i} \subset (x_{i} - \Delta(x_{i}), x_{i} + \Delta(x_{i})), i=1,...,n$$
 (2)

The set of all convenient partitions of [a,b] with respect to Δ will be denoted by $\mathcal{Q}(\Delta)$. It is easy to prove that for any function $\Delta:[a,b] \longrightarrow (0,\infty)$ is $\mathcal{Q}(\Delta) \neq \emptyset$.

Further we will consider a fuzzy mapping $f:[a,b] \longrightarrow L$ (R) where L(R) denote the set of fuzzy numbers, i.e. the set of functions $\mu: R \rightarrow [0,1]$ that satisfy the following conditions:

- 1) There is $x_0 \in \mathbb{R}$ such that $\mu(x_0)=1$
- 2) The set $\mu_{\lambda} = \{x \in \mathbb{R}: \mu(x) \ge \lambda\}$ is convex for all $\lambda \in (0,1]$
- 3) μ is upper semicontinuous function
- 4) There is a compact set KCR such that $\{x \in \mathbb{R} : \mu(x) > 0\} \subset \mathbb{K}$. Definition 1. Let $\mu \in L(\mathbb{R}), \nu \in L(\mathbb{R})$ and $\mu_{\chi} = [a_{\chi}, b_{\chi}], \nu_{\chi} = [c_{\chi}, d_{\chi}]$ for $\forall \lambda \in (0,1]$.

i/ $\mu \in V$, if $a_{\chi} \in c_{\chi}$ and $b_{\chi} \in d_{\chi}$ for all $\chi \in (0,1]$ ii/ $\mu + V$ is the fuzzy number for which

$$(\mu + \nu) = [a_{\mu} + c_{\mu}, b_{\mu} + d_{\mu}]$$

iii/ if $h \in R$, there $h \mu$ is the fuzzy number for which

$$(\mu \mu)_{\mu} = [\mu a_{\mu}, \mu b_{\mu}], \quad \mu > 0$$

 $(\mu \mu)_{\mu} = [\mu b_{\mu}, \mu a_{\mu}], \quad \mu < 0 \text{ for all } \lambda \in (0, 1].$

We can define on the set L(R) a metric d by the following formula: $d(\mu, V) = \sup_{\lambda \in [0,1]} d(\mu, V_{\lambda})$, where $d(\mu_{\lambda}, V_{\lambda}) = d([a_{\lambda}, b_{\lambda}], [c_{\lambda}, d_{\lambda}]) = \max\{|c_{\lambda} - a_{\lambda}|, |d_{\lambda} - b_{\lambda}|\}$.

Puri and Ralescu proved that (L(R),d) is a complete metric space.

Definition 2. A fuzzy mapping $f:[a,b] \to L(R)$ is integrable (in the Kurzweil sense), if $\exists c \in L(R) \ \forall \ \epsilon > 0 \ \exists \ \Delta \colon [a,b] \to (0,\infty) \colon \forall \ D \in \mathcal{D}(\Delta) \colon d(\ S(f,D),c) < \epsilon$. The fuzzy number c is called the Kurzweil fuzzy integral of f and it is denoted by $\int_{a}^{b} f \ d\lambda$.

It is easy to prove that the following properties are satisfied: 1) $d(\mathcal{L}+\beta_*\gamma+\delta) \leq d(\mathcal{L},\gamma) + d(\beta_*\delta)$

- 2) $d(\mathcal{L}, \mathcal{B}) \leq d(\mathcal{L} + \mathcal{B}, \mathcal{B} + \mathcal{B})$
- 3) a(/ d. / B) = / a(d. B)
- 4) な(L+B)=たL+たB
- 5) 0.~=0

for all $d, b, y, \delta \in L(R)$ and all $k \in R, k > 0$

6) if $\mathcal{N}_{i}, \dots, \mathcal{N}_{n} \in \mathbb{R}$, $\mathcal{N}_{i} > 0$ (i=1,...,n) are such that $\sum_{i=1}^{n} \mathcal{N}_{i} = \text{b-a and } \mathcal{L}_{i}, \beta_{i} \in L(\mathbb{R}) \text{ such that } d(\mathcal{L}_{i}, \beta_{i}) < \mathcal{E} \text{ (i=1,...,n)}$ n), then $d(\sum_{i=1}^{n} \mathcal{N}_{i} \mathcal{L}_{i}, \sum_{i=1}^{n} \mathcal{N}_{i} \beta_{i}) < \mathcal{E} \text{ (b-a)}.$

By the help of these properties the following properties of the Kurzweil fuzzy integral can be proved.

Proposition 3. If f,g are Kurzweil integrable fuzzy mappings and \angle , $\beta \in \mathbb{R}$, then $\angle f + \beta g$ is Kurzweil integrable and $\int_{a}^{b} (\angle f + \beta g) d\lambda = \angle \int_{a}^{b} f d\lambda + \beta \int_{a}^{b} g d\lambda$ holds.

Proposition 4. A fuzzy mapping f is integrable iff $\forall \epsilon > 0 \exists \Delta : [a,b] \rightarrow (0,\infty) : \forall D_1, D_2 \in \mathcal{D}(\Delta) : d(S(f,D_1),S(f,D_2)) < \mathcal{E}$.

Proposition 5. If a fuzzy mapping f is integrable on [a,b] then f is integrable on every subinterval [c,d]<[a,b], too,and $\int_a^b f d\lambda = \int_a^c f d\lambda + \int_c^b f d\lambda$.

Proposition 6. If $(f_n)_{n=1}^{\infty}$ is a sequence of integrable fuzzy mappings on [a,b], uniformly converging to a fuzzy mapping f then f is integrable, too, and

$$\lim_{n\to\infty} \int_a^b f_n d\lambda = \int_a^b f d\lambda \quad \text{holds.}$$

Remark 7. The uniform convergence of a sequence of fuzzy mappings $(f_n)_{n=1}^{\infty}$ on [a,b] means the following: $\forall \epsilon > 0 \ \exists \ N_{\epsilon} : \forall \ n > N_{\epsilon} : \ d(f_n(x),f(x)) < \epsilon \text{ for all } x \in [a,b]$ ([3]).

For the Kurzweil fuzzy integral there holds the following

theorem.

Theorem 8. Let $(f_n)_{n=1}^{\infty}$ be a sequence of integrable fuzzy mappings such that $f_n \leqslant f_{n+1}$ (n=1,2,...) and $\lim_{n\to\infty} f_n(x)=f(x)$ for all $x\in [a,b]$. Let the sequence of fuzzy numbers $(f_n d \lambda)_{n=1}^{\infty}$ is convergent. Then f is integrable fuzzy mapping, toe, and

$$\int_{a}^{b} f d\lambda = \lim_{n \to \infty} \int_{a}^{b} f_{n} d\lambda \quad \text{holds.}$$

Remark 9. $f_n \le f_{n+}$ means that: for all $x \in [a,b]$ is $f_n(x) \le f_{n+1}(x)$ with respect to relation $a \le n$ on L(R).

REFERENCES :

- [1] Matłoka,M.: On Integral of Fuzzy Mappings,Busefal (in print)
- [2] Kurzweil, J. (1980) Nichtabsolut Konvergente Integrale.
 Teubner-Texte zur Matematik, Band 26, Leipzig.
- [3] Matloka, M.: Fuzzy mappings Sequences and Series,
 Busefal (in print).