A GENERAL EXTENSION THEOREM FOR MEASURES ON FUZZY SETS

Ferdinand Chovanec, František Kôpka Technical University O31 19 Liptovský Mikuláš Czechoslovakia

1. INTRODUCTION

A usual mathematical model for the quantum statistical mechanics is the quantum logic theory, i.e. the theory of orthomodular lattices ([5],[6]).

A state m on an orthomodular G- complete lattice $L(V,\Lambda,L, 0,1)$ is a mapping m : $L \rightarrow [0,1]$ ([0,1] is the unit interval in the real line) satisfying the following two conditions:

- 1. m(1) = 1
- 2. if $a_i = a_j$, $i \neq j$, then $m(\bigvee_{i=1}^n a_i) = \sum_{i=1}^n m(a_i)$.

 3. Riečan and A. Dvurečenskij pointed out ([1],[2]) that the same algebraic structure has the Piasecki P measure ([3],[4]) and they introduced a new model for the statistical quantum mechanics. The Piasecki measure $m : M \rightarrow [0,1]$ is defined on an appropriate set of real functions $M \subset [0,1]^X$ and satisfies the following two conditions:
 - 1. $m(f \lor f^{\perp}) = 1$ for every $f \in M$,
- 2. if $f_i = f_j^i$, $i \neq j$, then $m(\bigvee_{i=1}^{\infty} f_i) = \sum_{i=1}^{\infty} m(f_i)$.

 Of course, here $f_i^i = 1 f$.

In the present paper we work with the mapping $m: A \rightarrow [0,1]$ where A belongs to a class of lattices and in this way we

obtain a common generalization of a state on a quantum logic as well as the Piasecki measure. The main result is a measure extension theorem. Special cases of our extension theorem is theorem on extension of states on logics [5] and the theorem on extension of the Piasecki measure [4].

2. THE MEASURE EXTENSION THEOREM

Let H be a 6- continuous lattice with 0 and 1 (i.e. if x_n / x , y_n / y , n = 1, 2, ..., then $x_n / y_n / x / y$ and if x_n / x , y_n / y , n = 1, 2, ..., then $x_n / y_n / x / y$. Let 1: H \rightarrow H be a mapping satisfying the following conditions:

- 2.1 $(x^4)^4 = x$ for every $x \in H$
- 2.2 if x = y, then $y^{\perp} = x^{\perp}$.

Let ACH be such that

- 2.3 if a,b &A, then a V b &A
- 2.4 if a e A, then a e A
- 2.5 for every $x \in H$ there is a sequence $(a_n)_{n=1}^{\infty}$, $a_n \in A$, $n = 1, 2, \ldots$, such that $x \stackrel{\leq}{=} \bigvee_{n=1}^{\infty} a_n$. There is given a mapping $m : A \longrightarrow [0,1]$ satisfying the following conditions:
 - 2.6 m(a va^{+}) = 1 for every a \in A
 - 2.7 if $a,b \in A$, $a \stackrel{\checkmark}{=} b$, $a \neq b$, then $m(a \lor b) = m(a) + m(b)$
- 2.8 if $a_n \nmid a$, $b_n \not > b$, $a_n, b_n \in A$, $n = 1, 2, ..., a \neq b$, $a, b \in H$, then $m(a_n \land b_n^1) \geqslant 0$ (m is a strongly continuous mapping)
- 2.9 if $a,b \in A$, then $m(a \lor b) + m(a \land b) = m(a) + m(b)$ (m is a valuation).

It is easy to prove that m has the following properties: 2.10 m(a) + m(a¹) = 1 for every $a \in A$

2.11 if
$$a,b \in A$$
, $a = b$, then $m(b) = m(a) + m(b \land a^{\perp})$

2.12 m is non - decreasing (i.e. if $a,b \in A$, $a \stackrel{\checkmark}{=} b$, then $m(a) \leq m(b)$

2.13 if
$$a_n \nearrow a$$
, a_n , $a \in A$, then $m(a_n) \nearrow m(a)$

2.14 if
$$b_n \setminus b$$
, $b_n, b \in A$, then $m(b_n) \setminus m(b)$

2.15 m is G- additive (i.e. if $a_n \in A$, $n = 1, 2, ..., a_i \stackrel{\text{def}}{=} a_{ij}^{\perp}$, $i \neq j$, $\bigvee_{n=1}^{\infty} a_n \in A$, then $m(\bigvee_{n=1}^{\infty} a_n) = \sum_{n=1}^{\infty} m(a_n)$) 2.16 m is subadditive (i.e. $m(a \lor b) \leq m(a) + m(b)$.

We want to extend the map m on the smallest 6- complete lattice S(A), generated by the sublattice A. Our extension will be made in the standard way.

Let
$$A^+ = \{b \in H, \exists b_n \neq b, b_n \in A\}$$
 and $m^+ : A^+ \rightarrow [0,1],$

$$m^+(b) = \lim_{n \to \infty} m(b_n).$$
The definition of m^+ is correct, due to the following assertion.

Lemma. Let
$$a_n, b_n \in A$$
, $n = 1, 2, ..., a_n / a$, b_n / b , $a \leq b$, then
$$\lim_{n \to \infty} m(a_n) \leq \lim_{n \to \infty} m(b_n).$$

It is not difficult to prove that m is an extension of m. a valuation, it is upper continuous, non - decreasing, additive and subadditive map.

Let us define $m^*: H \rightarrow [0,1]$ in the following way: $m^{*}(x) = \inf\{m^{+}(b), b \in A^{+}, b \ge x\}.$

The main result is contained in the following theorem.

THEOREM. Let H be a G - continuous lattice with O and 1, which satisfies the conditions 2.1 and 2.2. Let A be a sublattice of the lattice H which satisfies the conditions 2.3, 2.4, 2.5. Let $m : A \rightarrow [0,1]$ be the map satisfying the conditions 2.6 to 2.9. Let S(A) be the least G - complete sublattice of the lattice H generated by the sublattice A.

Then there exists exactly one mapping $\overline{m}: S(A) \rightarrow [0,1]$ being an extension of m and satisfying 2.6 to 2.9. The mapping \overline{m} coincides with m^* on S(A).

REFERENCES

- [1] Riečan, B.: A new approach to some notions of statistical quantum mechanics. Busefal.
- [2] Dwurečenskij, A. Riečan, B.: On randomness and fuzziness.
 In: Progress in fuzzy sets in Europe.
- [3] Piasecki, K.: Probability of fuzzy events defined as denumerable additivity measure. Fuzzy sets and systems 17, 1985, 271 284.
- [4] Piasecki, K.: Extension of fuzzy P measure. Busefal 19, 1984, 26 41.
- [5] Riečan, B.: The measure extension theorem for subadditive probability measures in orthomodular 6- continuous lattices. Comment. Math. Univ. Carol. 20, 2, 1979, 309 315.
- [6] Varadarajan, V. S.: Geometry of quantum theory.

 Van Nostrand, New York 1968.
- [7] Chovanec, F. Kôpka, F.: Fasciculi Mathematici.
 To appear.