ON JOINT OBSERVABLE FOR F-QUANTUM SPACES

Anatolij DVUREČENSKIJ, Mathematical Institute, Slovak Academy of Sciences, Obrancov mieru 49, 814 73 Bratislava, ČSSR Beloslav RIEČAN, Technical University of L. Mikuláš, Jabloňová 518/1, O3101 Liptovský Mikuláš, ČSSR

1. F-quantum spaces

There are many analogies between fuzzy set theory and quantum logic models of quantum mechanics as it has been noticed in [7]. In a new axiomatic model for measurement of quantum mechanical observables based on fuzzy sets ideas we solve the problem of existence of a joint observable for a given system of observables of an F-quantum space.

Definition 1.1. By an F-quantum space we mean a couple (X,M), where X is a non-empty set and M is a subset of $[0,1]^X$ with (i) if l(x) = 1 for any $x \in X$, then $l \in M$; (ii) if $f \in M$, then $l-f \in M$; (iii) if 1/2(x) = 1/2 for any $x \in X$, then $1/2 \notin M$; (iv) if $\{f_n\} \subset M$, then $\bigvee_{n \in \mathbb{N}} f_n := \sup_{n \in \mathbb{N}} f_n \in M$. Using

Using the termanology of Piasecki [4] M is a soft fuzzy \mathfrak{G} -algebra of fuzzy sets of X. Moreover, $\bigcap_{n} f_{n} := \inf_{n} f_{n} \in \mathbb{N}$ for any $\{f_{n}\} \subset \mathbb{M}$. A non-empty subset $\mathcal{M} \subset \mathbb{M}$ is said to be a Boolean algebra (\mathfrak{G} -algebra) of an F-quantum space (X,M) if (i) there are the minimal and maximal elements $O_{\mathcal{M}}$, $1_{\mathcal{M}} \in \mathcal{M}$ such that, for any $f \in \mathcal{M}$, $O_{\mathcal{M}} \in f \leq 1_{\mathcal{M}}$; (ii) a mapping $1:f \mapsto f^{-} = 1-f$, $f \in \mathcal{M}$, satisfies $f \vee f^{-} = 1_{\mathcal{M}}$ for any $f \in \mathcal{M}$; (iii) \mathcal{M} is with respect to $A, \vee, 1$, $O_{\mathcal{M}}$, $1_{\mathcal{M}}$ a Boolean algebra (\mathfrak{G} -algebra). We note that $O_{\mathcal{M}} \neq 1_{\mathcal{M}}$, in the opposite case $O_{\mathcal{M}} = 1/2 = \mathfrak{M}$. It is simple that M is a Boolean \mathfrak{G} -algebra iff $f = f^{2}$ for any $f \in \mathcal{M}$, i.e, M consists from crisp sets.

Let (Ω, \mathbf{A}) be a measurable space. We say that a mapping x:

I - M is an I -observable (I - 5 -observable) of (X,M) if (i) x(A) = 1 - x(A) for any $A \in A$ /here A denotes the complement of A in Ω /; (ii) $x(\bigcup_i A_i) = \bigvee_i x(A_i)$ for any finite (countable) number of sets from I. For the quantum mechanics it is of a great importance the case when I is the Borel 5 -algebra of some separable Banach space Y, in particular, when $Y = R_1$. In this case we call x an observable. The range of an(5 -) observable x, that is, the set $R(x) = \{x(A): A \in B(R_1)\}$ is a Boolean algebra (5 - agebra) of (X,M) with the minimal and maximal elements $x(\emptyset)$ and $x(R_1)$, respectively.

We say that a system $\{x_t: t \in T\}$, where x_t is a $(6 \rightarrow 0)$ observable of (X,M), has a joint $(6 \rightarrow 0)$ observable if there is an R(T)-observable $(B(T) - 6 \rightarrow 0)$ observable (X,M), where R(T) (B(T)) is the minimal algebra $(6 \rightarrow 0)$ algebra of R_1^T containing all finite-dimensional rectangles, such that $x(t)A_t = t$ $x_t(A_t)$ for any $A_t \in B(R_1)$ and any finite non-empty $A_t \in B(R_1)$ and any finite non-empty $A_t \in B(R_1)$

2. Joint observables

Theorem 2.1. Let $\{x_t: t \in T\}$ be a system of (6-) observables of an F-quantum space (X,M). The following assertions are equivalent: (i) $x_s(\emptyset) = x_t(\emptyset)$ for any $s,t \in T$.

- (ii) $x_s(R_1) = x_t(R_1)$ for any $s, t \in T$.
- (iii) Any subsystem $\{x_s, x_t\}$, s,teT has a joint(5-)obaser-vable.
- (iv) $\{x_t: t \in T\}$ has a joint (6-) observable. Proof. The implication (iii) \rightarrow (i) is evident. Conversely; for simplicity we put $x = x_s$, $y = x_t$. Denote by $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ with $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ with $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ with $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ with $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ with $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ with $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ with $\{x_t: t \in T\}$ and $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ with $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ and $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ and $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ and $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ and $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ and $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ and $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ and $\{x_t: t \in T\}$ and define a mapping $\{x_t: t \in T\}$ and $\{x_t: t$

For the case of 6 -observables, the proof of (i) ->(iv).

Since any Boolean algebra is isomorphic to some algebra of subsets [8], the conditions (i) -(ii) for observables are equivalent in order to exists a Boolean algebra $\mathcal{M} \subset \mathbb{M}$ including all ranges $\mathcal{M} (x_t)$. Using the Zorn lemma, we may show that there is a maximal Boolean algebra \mathcal{M}_0 of (X,M) containing \mathcal{M}_0 . We assert that \mathcal{M}_0 is a Boolean \mathcal{M}_0 -algebra of (X,M). Indeed, let \mathcal{M}_0 \mathcal{M}_0 . Then \mathcal{M}_0 is an element of M, and \mathcal{M}_0 and \mathcal{M}_0 for any \mathcal{M}_0 . In fact, \mathcal{M}_0 is an element of M, and \mathcal{M}_0 and \mathcal{M}_0 is an element of M, and \mathcal{M}_0 is a \mathcal{M}_0 and \mathcal{M}_0 is an element of M, and \mathcal{M}_0 is a \mathcal{M}_0 and \mathcal{M}_0 is an element of M, and \mathcal{M}_0 is a \mathcal{M}_0 and \mathcal{M}_0 is an element of M, and \mathcal{M}_0 and \mathcal{M}_0 is a \mathcal{M}_0 and \mathcal{M}_0 is a \mathcal{M}_0 and \mathcal{M}_0 are \mathcal{M}_0 and \mathcal{M}_0 and \mathcal{M}_0 are \mathcal{M}_0 and \mathcal{M}_0 are \mathcal{M}_0 and \mathcal{M}_0 are \mathcal{M}_0 and \mathcal{M}_0 are \mathcal{M}_0 are \mathcal{M}_0 and \mathcal{M}_0 are \mathcal{M}_0 and \mathcal{M}_0 are \mathcal{M}_0 are \mathcal{M}_0 and \mathcal{M}_0 are \mathcal{M}_0 are \mathcal{M}_0 are \mathcal{M}_0 are \mathcal{M}_0 are \mathcal{M}_0 are \mathcal{M}_0 and \mathcal{M}_0 are \mathcal{M}_0 are

The G-distributivity of \mathcal{M}_0 entails that \mathcal{M}_0 has a G-strong extension property, for definition see [8], According to Sikorski [8, Theorem 37.1], the joint observable x of X,M generated by $\{x_t: t \in T\}$ may be extended uniquely to a joint-G-observable of (X,M).

Let $f: R_1 \longrightarrow R_1$ be a Borel Measurable function and let x be a G-observable of (X,M). Then by $f \circ x$ we mean a G-observable of (X,M) defined by $f \circ x(E) = x(f^{-1}(E))$, $E \in B(R_1)$. According to the terminology of the theory of quantum logics (see $E \circ Y$), we say that two G-observables of (X,M)x and y are compatible if $x(\emptyset) = y(\emptyset)$.

Theorem 2.2. Let $\{x_t: t \in T\}$ be a system of G -observables of an F-quantum space (X,M). The following assertions are equivalent: $(i)\{x_t: t \in T\}$ is a system of mutually compatible observables.

- (ii) $\{x_+: t \in T\}$ has a joint G-observable.
- (iii) There is a measure space (X, \mathcal{G}) , an \mathcal{G} -measurable function $g_t: \Omega \to R_1$, and an \mathcal{G} -G-observable H of (X,M) such that $H(g_t^{-1}(E)) = x_t(E)$ for all $t \in T$ and $E \in B(R_1)$.

 If, moreover, (X,M) is separable in the sense that any Boolean G-algebra of (X,M) has a countable generator, or that T is coun-

table, then (i) is equivalent to (iv) There exists a 6-observable x and measurable functions $\mathbf{t}_t : \mathbf{R}_1 \longrightarrow \mathbf{R}_1$ such that, for all te T, $x_t = f_{t-}x$.

Proof. It follows from Theorem 2.1 and Theorem 6.9 of [9]. Q.E.D.

Theorem 2.3. Let x_1, \ldots, x_n be mutually compatible \mathbf{c} -observables of an F quantum space (X,M) with a joint 6-observable x. If g is any real-valued Borel function on R_n , then $g \cdot (x_1, \dots, x_n) : E \longrightarrow$ $x(g^{-1}(E))$, $E \in B(R_1)$, is a G-observable of (X,M). If g_1, \ldots, g_k are real-valued Borel functions on R_n and $y_i = g_i \cdot (x_1, \dots, x_n)$, then y_1, \dots, y_k are mutually compatible $\mathbf{6}$ -observables of (X,M), and for any real-valued Borel function h on R_k b (y_1, \dots, y_k) = = $(h(g_1,...,g_k)) \cdot (x_1,...,x_k)$, where $h(g_1,...,g_k)$ is the function $t = (t_1, ..., t_n) \mapsto h(g_1(t), ..., g_k(t))$.

Proof. It is straightforward and therefore is omitted.

Theorems 2.2 and 2.3 are of a great importance for building socalled functional calculus for compatible 6 -observables. Therefore, for compatible G-observables x and y of (X,M) we may define x+y, x.y, etc., if we put, for example, $x+y = (f+g) \cdot z$, where x = foz, y = goz, according to Theorem 2.2,etc.

In the rest of this section we concentrate on the problem of existence of a joint distribution of a given system of mutually compatible 6 -observables. For the quantum logic approach to quantum mechanics it is of great importance; it is known [2] that there are cases when it fails. By an F-state on F-quantum space (X,M) we understand a mapping $m:M \longrightarrow [0,1]$ such that m(fv(1-f)) = 1for any $f \in M$; (ii) $m(\bigvee_{i} f_{i}) = \sum_{i} m(f_{i})$ whenever $f_{i} \le 1 - f_{j}$ for i≠j. In the terminology of Piasecki [4] and F-state is a P-measure. Theorem 2.4. Let $\{x_t: t \in T\}$ be a system of 6-observables of an F-quantum space (X,M). The pairwise compatibility of $\{x_t: t \in T\}$ implies that there exists a unique propability measure (called a joint distribution of x: te T) such that

 $(\text{tot} A_t) = m(\text{tot} x_t (A_t)) \text{ for any } A_t \in B(R_1), \text{ tod}, \text{ and any finite subset } C \text{ T in any F-state m.}$

Proof. According to Theorem 2.1, there is a joint 6-observable x of $\{x_t: t \in T\}$. Let us put $\mu(A) = m(x(A))$, AGBCT). We assert that $\mu(A) = \mu(A)$ is a probability measure in question.Q.E.D. The authors hope to study also the problem of sjoint distribution for noncompatible observables.

References

- [1] G. Cattaneo, Canonical embedding of an abstract quantum logic into the partial Bear -ring of complex fuzzy events, Fuzzy Sets and Systems 9 (1983) 179-198.
- [2] A. Dvurečenskij, S. Pulmannová, Connection between joint distribution and compatibility, Rep. Math. Phys. 19 (1984), 349-359.
- [3] K.R. Parthasarathy, Probability measure on metric spaces. Acad. Press, New York, London (1967).
- [4] K. Piasecki, Probability of fuzzy events defined as denumerable additivity measure. Fuzzy Sets and Systems 17 (1983) 271-284.
- E. Prugovečki, A postulation frame work for theories of simultaneous measurements of several observables, Found. Phys. 3 (1973) 3-18.
- [6] P. Pták, Spaces of observables, Czech Math. J. 34 (1984) 552-561.
- [7] B. Riečan, A new approach to some notions of statistical quantum mechanics, Busefal, to appear.
- [8] R. Sikorski, Boolean algebras, Springer-Verlag (1964).
- 197 V.S. Vardarajan, Geometry of quantum theory, Van Nostrand, New York (1968).