CONDITIONAL EXPECTATION OF FUZZY RANDOM VARIABLE

Jan BAN

Dept. Prob. and Statistics MFF,

Univ. Komensky, 842 15 Bratislava, Cenechoslovakia

On the base of Aumann integral ([1]) of a set-valued function, M.L.Puri and D.A.Ralescu introduced in [5] the notion of a fuzzy random variable by the following way. Let F(R) denote the set of all fuzzy subsets $u:R \rightarrow \langle 0,1 \rangle$ with the properties: (i) $u' = \{x \in R: u(x) \geqslant d\}$ is compact for all d>0 and (ii) $u' = \{x \in R: u(x) = 1\} \neq \emptyset$. Let (Ω,S,P) be a probability space where the probability measure P is assumed to be nonatomic.

Now, a fuzzy random variable is such a function $X: \Omega \to F(R)$ that $\{(\omega, x) : x \in X(\omega)\} \in S \times B(R)$ for every $L \in \{0,1\}$ where $X^L: \Omega \to 2^R$ is defined by $X^L(\omega) = \{x \in R : X(\omega)(x) \geqslant L\}$ and B(R) is the Borel G-algebra of R. A fuzzy random variable X is called integrably bounded if for every X^L there exists a function $h^L: \Omega \to R$, $h \in L^1(P)$ such that $|x| \leq h^L(\omega)$ for all x, ω with $x \in X(\omega)$, $L \in \{0,1\}$. The family of all integrably bounded fuzzy variables we denote by $FV(\Omega)$.

Definition 1: For any fuzzy variable $X \in FV(\Omega)$ we define $\int X dP$, $A \in S$ as such $u \in F(R)$ for which $\{x \in R: u(x) \ge L\} = (A) \int X^d dP$, $A \in S$ where $(A) \int X^d dP = \{\int f dP, f \in L^1(P): f(w) \in X(w)\}$ is Aumann integral

of X^L , $L \in (0,1)$, $A \in S$.

The proof of existence and uniqueness of this integral is quite the same as in [5] and is based on the following lemma. Lemma 1: Let M be a set and let $\{M_{\perp}: L \in \langle 0, 1 \rangle\}$ be a family of subsets of M such that (i) $M_{0} = M$, (ii) $L \leqslant \beta$ implies $M_{\perp} \geq M_{\beta}$ and (iii) $d_{1} \leqslant d_{2} \leqslant \dots$ lim $d_{n} = d$ implies $M_{\perp} = \bigcap_{n=1}^{\infty} M_{d_{n}}$.

Then the function $\phi: M \to \langle 0, 1 \rangle$ defined by $\phi(x) = \sup\{0, 1\} : x \in M_{\mathcal{L}}\}$ has the property that $\{x \in M: \phi(x) > \mathcal{L}\} = M_{\mathcal{L}}$ for every $\mathcal{L} \in \langle 0, 1 \rangle$. Lemma 1 is proved in [4] and we shall use it to the construction of a conditional expectation of any integrably bounded fuzzy random variable.

Definition 2: Let S_0 be a sub-5-algebra, $S_0 \subset S$ and $X: \Omega \to F(R)$ be an S-measurable (i.e. $\{(\omega, x): x \in X'(\omega)\} \in S \times B(R) \not\leftarrow (0, 1)$) integrably bounded fuzzy random variable. A conditional expectation of X relative to S_0 (let us write $E(X/S_0)$) is such a function $Y: \Omega \to F(R)$ that (i) Y is S_0 -measurable and

(ii)
$$\int_{A} Y dP = \int_{A} X dP \text{ for all } A \in S_{O}$$

Theorem 1: Let $X \in FV(\Omega)$ be S-measurable and S_O be a sub-5-algebra of S. Then there exists such a $Y \in FV(\Omega)$ that Y is S_O -measurable and $\int_A XdP = \int_A YdP$ for every $A \in S_O$.

The point how to prove this theorem is following.

Let $Z_{i}(A) = (A) \int X^{i} dP_{i} dE_{i}(0,1)$, $A \in S_{0}$. Every Z_{i} , $A \in (0,1)$ is a setvalued P-continuous measure of bounded variation and then,
according to [2], Theorem 4.3., every Z_{i} has a Radon-Nikodým
derivative F_{i} i.e. S_{0} -measurable set-valued function such that $Z_{i}(A) = (A) \int F_{i} dP_{i}$, $A \in S_{0}$. The functions F_{i} we can choose so that
there exists $E \in \Omega$ with P(E) = 0 and for every $w \in \Omega \setminus E$ a family

 $\{F_{\ell}(\omega), \mathcal{L}\in \langle 0,1\rangle\}$ satisfies the assumptions of Lemma 1 if we define $F_{\ell}(\omega) = \mathbb{R}$, $\omega\in\Omega$. Define the function

$$Y_{(\omega)} = \begin{cases} u \in F(R) & \text{where } u(x) = \sup\{\omega : x \in F(\omega)\} & \text{if } \omega \in \Omega \setminus E \\ v \in F(R) & \text{where } v(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases} & \text{if } \omega \in E. \end{cases}$$

Now, Y is a version of the conditional expectation of X relative to $S_{\Omega^{\bullet}}$

Let d denote the metric in the complete metric space (F(R),d) introduced in [5]. Then the following theorem is true:

Theorem 2: Let $\{X_n\}_{n=1}^\infty \subset FV(\Omega)$ and $X \in FV(\Omega)$ be such that for every $\omega \in (0,1)$ X^ω and X_n^ω , $n=1,2,\ldots$ have compact and convex values and $X_n(\omega) \xrightarrow{d} X(\omega)$ for almost every $\omega \in \Omega$.

Let S_0 be a sub-5-algebra of S. Let there exist $g_1 \in L^1(P)$ such that $\sup_{x \in X_n^d(\omega)} |x| \leq g_1(\omega)$, $n \geqslant 1, d > 0$ and $g_2 \in L^1(P)$ such that

 $\sup_{x \in X'(\omega)} |x| \leq g_2(\omega) \text{ for } L > 0. \text{ Then } \mathbb{E}(X_n/S_0)(\omega) \xrightarrow{a} \mathbb{E}(X/S_0)(\omega) \text{ a.e.}$

References:

- [1] R.J. AUMANN, Integral of set-valued functions, J.Math.Anal.Appl. 12(1965), 1 - 12.
- [2] F. HIAI, Redon-Nikodým theorems for set-valued measures, J.Multivariate Anal. 8(1978), 96 - 118.
- [3] F. HIAI, convergence of conditional expectations and strong laws of large numbers for multivalued random variables, Trans.Amer.Math.Soc.291(1985), 613 627.
- [4] C.V. NEGOITA, D.A. RALESCU, Applications of FUZZY SETS to System Analysis, Wiley, New York 1975.
- [5] M.L. PURI, D.A. RALESCU, Fuzzy Random Variables, J.Math.Anal.Appl. 114(1986), 409 - 442.