A NEW APPROACH TO SOME NOTIONS OF STATISTICAL QUANTUM MECHANICS

Beloslav RIEČAN, Liptovský Mikuláš

A usual mathematical model of statistical quantum mechanics is the quantum logic theory. Here we suggest to work instead of a quantum logic L with a family M of fuzzy subsets of a given set. This approach is motivated by a similarity between the notion of a state on a quantum logic ([1]) and the notion of the Piasecki measure ([2]) on a fuzzy algebra.

Example 1. Let $(L, \vee, \wedge, \perp, 0, 1)$ be a quantum logic. A state $m:L\to <0$, 1> is a mapping such that

1.
$$m(1) = m(a \vee a^{\perp}) = 1$$
.

2. If
$$a_i \leq a_j^{\perp}$$
 ($i \neq j$), then $m(Va_i) = \sum m(a_i)$.

Example 2. Let M be a set of fuzzy subsets of a given set (closed under some operations). Then the Piasecki measure m: $M \rightarrow <0$, 1> is a mapping such that

1. $m(f \lor (1 - f)) = 1$ for every $f \in M$.

2. If
$$f_i \leq 1 - f_j$$
 ($i \neq j$), then $m(\forall f_i) = \sum m(f_i)$.

Definition 1. By an F-quantum space we mean a couple (X,M), where X is a non-empty set and M is a subset $M \subset F(X)$ satisfying the following conditions:

1.1. If e(x) = 1 for every $x \in X$, then $e \in M$.

1.2. If $f \in M$, then $1 - f \in M$.

1.3. If $f_n \in M$ (n=1,2,...), then $\forall f_n \in M$.

1.4. If $f(x) = \frac{1}{2}$ for every $x \in X$, then $f \notin M$.

Definition 2. By an F-state on an F-quantum space (X,M) we understand a mapping $m:M \rightarrow <0,1>$ satisfying the following conditions:

2.1. $m(f \lor (1 - f)) = 1$ for every $f \in M$.

2.2. If
$$f_i \in M(i=1,2,...)$$
 and $f_i \leq 1 - f_j$ (i\(\neq j\)), then
$$m(\ \lor f_i) = \sum m(f_i).$$

Definition 3. By an F-observable defined on an F-quantum space (X,M) we mean any mapping $Z:B(R^1) \longrightarrow M$ $(B(R^1)$ denotes the family of all Borel subsets of R^1) satisfying the following conditions:

3.1. $Z(A^{\prime}) = 1 - Z(A)$ for every $A \in \mathbf{B}(\mathbb{R}^{1})$. 3.2. If $A_{n} \in B(\mathbb{R}^{1})$ (n=1,2,...) and $A_{n} \cap A_{m} = \emptyset$ (n≠m), then $Z(\bigcup A_{n}) = \bigvee Z(A_{n})$.

Definition 4. If Z is an F-observable defined on an F-quantum space (X,M), then by mean value of Z we mean

$$E(Z) = \int_{R} x \, dm_{Z}(x)$$

if this integral exists, $m_Z:B(R^1) \longrightarrow <0$, 1> being the probability measure defined by the equality $m_Z(A) = m(Z(A))$.

Theorem. If (X,M) is an F-quantum space, then the system $S = \{A \subset X : X_A \in M\}$ is a 6-algebra. If m is an F-state on M, then $\overline{m}: S \longrightarrow <0$, 1> defined by $\overline{m}(A) = m(X_A)$ is a probability measure. If $Y: X \longrightarrow R$ is a random variable (with respect to the probability space (X,S,\overline{m})), then $Z_Y:B(R^1) \longrightarrow M$ defined by $Z_Y(A) = X_{Y^{-1}(A)}$ is an F-observable. It is integrable if and only if Y is. In this case

 $E(Z_{\underline{Y}}) = E(Y) = \int_{X} Y d\overline{m}$

From a mathematical point of wiew the following two problems seems to be important:

Problem 1. Characterize the set of all F-states on the space M of all measurable functions.

Problem 2. Find conditions under which some operations with F-observables can be defined, e.g. conditions under which to every F-observables Z_1 , Z_2 there is an F-homomorphism $h:B(R^2) \longrightarrow M$ (i.e. $h(\bigcup A_n) = \bigvee h(A_n)$ and $h(A^*) = 1 - h(A)$) such that $h(A \times B) = Z_1(A) \land Z_2(B)$.

References

- [1] Varadarajan, V.S.: Geometry of quantum theory. Van Nostrand, New York 1968.
- [2] Piasecki, K.: On some relation between fuzzy probability measure and fuzzy P-measure. Buseful 23 (1985), 73 77.