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ABSTRACT

The purpose of this paper is to introduce briefly the theory of edge perception for
computer vision systems. This is done by transforming the gray-level’ images from
the absolute intensity domain to the preception domain by means of fuzzy set theory.
Using this approach, the edges in a given gray-level image are perceived at various
levels of perception in the domain [0, 1]. Two examples of such perception are

included.
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1. INTRODUCTION

In computer vision systems, the primary objective is to recognize a given set of objects
from a set of given images [2]. The objects may be partially occluded and may be lying in poor,
uneven or varying lighting conditions, or shrouded by smoke, chemical fumes or steam that
often exist on a factory floor. For a general robotic vision system it is imperative, therefore, to
obtain a proper identification of a given class of objects for use in a feedback control system.
One of the attributes, amongst many possible ones such as colour, texture, etc., that is being used
extensively in robotic vision systems, is edges [1, 2, 3, 9] which determine the shapes and con-
tours of the objects. .

In a natural vision system the process of ‘seeing’ or ‘recognizing objects’ entirely depends
upon the ‘perception’ of certain attributes such as colour or intensity rather then the measure-
ment of their physcial characteristics in absolute quantitative terms. The same thing is true in
the perception of temperature, hearing, fragrance, etc, using natural sensors. Therefore, in
natural systems ‘perception’ plays the same role as ‘measurements’ in artificial systems [6, 7, 8].
In the development of intelligent systems it is proposed, therefore, to make use of ‘perceptions’
by using some sort of perceptor rather than absolute quantitiative measurements using
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conventional measuring devices.

The purpose of this paper is to introduce briefly the theory of edge perception for computer
vision systems, Fig. 1. This is done by transforming the gray-level images from the absolute
intensity domain to the perception domain using fuzzy set theory.
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Fig. 1 Robotic Vision Control System.

2. IMAGE AMBIGUITY AND FUZZY SET THEORY

Given the gray levels of the intensity profiles of an image, the problem of edge detection by
a natural vision system essentially deals with the ‘perception’ of these gray intensity levels and
the act of perceiving ‘significant’ changes at the macroscopic level. The natural vision system,
therefore, perceives the image at an aggregate or granule level rather than on an individual pixel
by pixel basis. The ‘granularity’ or ‘aggregation’ is one of the important attributes found in
human perception and thinking and, therefore, in decision making processes.

It is possible to use an artificial perceptor similarly! for a machine vision system. The
artificial perceptor transforms the gray intensity levels of an image found in the x-y plane into
perceived intensity profiles in the x-y plane. This transformation into perceived intensity profiles
in the x-y plane can be achieved using fuzzy set theory since it deals with a set of objects or
phenomena which may ambiguously belong to a set. In fuzzy set theory the sets are not defined
crisply as in the case of ordinary set theory (ir belongs to, membership grade = 1; it does not
belong to, membership grade = 0). Instead, fuzzy set theory deals with vague phenomena whose
grade of membership is defined over an interval [0, 1]. Human perception deals with the fuzzi-
ness of a phenomenon that can be described like the diffusion of gas in thermodynamics. In this
analogy, the higher the level of randomness, the greater is the energy or entropy associated with
it. A similar concept of entropy has been used in classical (probabilistic) information theory,

and a similar entropy measure can be defined for the measurement of the ambiguity associated
with a fuzzy phenomenon.

2.1 Graded Membership Function, 1, (x)

A fuzzy set is a class of objects or phenomena that accepts the notion of partial membership

over the interval [0,1]. Let X = {x} be a set of objects, then a fuzzy set A € X is a set of ordered
pairs
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A={x,np,(x)}, xeX, 1)
where p, (x) is called the ‘characteristic function,” or ‘graded membership’ of x in A. The
membership function i, (x) maps the fuzzy set A onto the interval [0,1]

Ha. A—[0,1].

In other words, the membership function i, (x) describes the strength of our ‘perception’
or ‘belief thatx e A. If uy(x) =1, itis certain thatx isin A and if M4 (x) =0, then it is certain
that x is not in A. For x over 0 < K4 (x) < 1, there is an uncertainty associated with x ; that is, x
belongs to A with the possibility p, (x). However, it should be noted that the assignment of a

membership function to a fuzzy set is subjective and, in general, reflects the context in which the
problem is viewed.

2.2 Fuzzy Mapping Functions

Let a fuzzy phenomenon X be defined over a real interval [Xm> Xp ], where x,, and x,
correspond respectively to the lower and upper bounds of the set X.

There are many functions described in the literature (3,4] which map a subjective and
ambiguous (fuzzy) phenomenon X on a real line into a membership domain p: X - [0, 1].
Several such mapping functions, using sinusoids, will be described now.

(i) The S, Mapping Function

Consider again a fuzzy phenomenon X described over the interval [x,, » X3¢ 1. Define a map-
ping function S, as

Hs,(x) =81(x, Xy xpr)

.. Tt Xm
= sin —(

, SX Sxy. 2

The function §, in (2) thus maps x, x,, < x <x,,, into an equivalent membership function
Hg,(x), 0 S g (x) < 1, of a fuzzy phenomenon X.

Define now a crossover point x = x, for this mapping function as a point for which

H'Sl(x) , x=x, = Hsl(xc) =0.5. 3)
For the mapping function S, defined in (2), the crossover point x,. is given by

X, = —;— Oy +2x,). O]

This mapping function S is not symmetrical about the crossover point x, . For a symmetri-
cal mapping function about x,,, we define another S function.
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(ii) The S, - Mapping Function

For the fuzzy set X over the real interval [x,,, x)s], define a symmetrical crossover point x,.

X, = -;— O +Xpg) &)

with a corresponding mapping function S, as
“’Sz(x) =SZ(xsxc9xM)

X —x;

[1+sgn(x —x.) sin-’zg—( )81, xXp Sx Sxp, 6)

1
2 XpM — X

where the power index g is a positive real constant, g > 0. The mapping function S, assigns
low membership values, between 0<pu < 0.5, to x for x <x. and higher values, between
0.5su<1, to x for x 2x,. The assignment of membership values can be enhanced by the

power index g > 1 as shown in Fig. 2.

s s — p— — — t— — — —

Fig. 3 TII - Mapping Function.
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(iii) The ; Mapping Function

Let us now define a symmetrical x; - mapping function as illustrated in Fig. 3 for a fuzzy
phenomenon X on a real line over the interval [x,,, x)]. Using the definitions of points x,, x,,

and x., as shown in Fig. 3, a symmetrical &, function can be defined as
b, (0) = 030X, X Xpg)
=Ty (X, X, %) U ®ip (X, X, Xpp), (7a)
where, as is shown in Fig. 3, 7,4 (x, x, , X, ) is defined over (x,, <x <Xx,) and is given by

T (X, X s Xg) = So(x, X, 5 Xg)

L wsgneoxy [ ECETE s g1 aw)
2 € 2 xg-x,
and =y (x, X, Xy ) is defined over (x; <x <xj) and is given by
Tyg (6, X, Xpg) = 1= So(x, X, Xpy)
1 ., X%
=Sl -senx -x) sin—- (XM—-J‘;) 8], g>1 (7c)

Remarks

The mapping functions as defined above map the real values of x € X over the interval
[Xy, Xp] into the perception domain over the real interval [0, 1]. Thus, for example, the S-
mapping functions, map the interval [x,,, x),] onto the interval [0, 1].

The S-mapping function is a monotonically increasing function and essentially gives a per-
ception of a phenomenon such as ‘the image is bright’ for intensity profiles over the intensity
levels [x,, , Xp 1. The'n — mapping function, on the other hand, monotonically increases over the
interval [x,,, x;] and then decreases over [x;, x);]. This function, thus, essentially represents a
perception of such a phenomenon as the ‘brightness of the image is x,’, around the intensity
profile centered at x; over the intensity levels [x,,, x)s]. The S-mapping function thus covers the
entire region from x,, to x,,, whereas the 7t - mapping function decimates this region into two
sections x,, to x,, and x; to x,,. In image processing, situations arise where one has to decimate
the entire intensity range, from x,, to x,,, into several smaller regions in order to isolate one
intensity level from an adjacent one. For example, in edge detection problems one has to deci+
mate the two adjacent regions which are characterized by a ‘significant’ change in intensity lev+
els. In the following section, therefore, we define a multiple-region-mapping function which

helps to decimate a range of intensity profiles into a number of distinct regions within the
‘perception-domain’ .
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Decimation into Multi-Region Intensity Levels

Consider a gray level digital image with varying intensities over the range [x,,, Xy] and
with a possible k-modal intensity profile as shown in the histogram of Fig. 4. From this histo-
gram one can distinctly identify k intensity levels, each corresponding to a peak in the histo-
gram.

One can perceive the histogram profile in Fig. 4 as a composition of several intensity levels,
X1, X2, o, X4 *+ X. One can also describe this intensity profile linguistically (fuzzily) as follows:

‘Over the intensity range [x,,,xy 1, the gray level digital image is composed of a set of
intensity levels (x1, x5 = X, = X)) .

In the above statement, the intensity levels x,, g =1 -, k, represent a set of fuzzy numbers.
These intensity levels are distinctly identified (with membership grade = 1), at their peaks

Xz, 4 =1, k. A maximum amount of uncertainty exists, however, at the valleys x. , x., -, in
the sense that it is not clear to which of the adjacent levels this intensity belongs. For example,
the intensity level at the valley x., may belong (equally) to the intensity x, or the intensity x»
with an equal possibility of )L = 0.5.

We shall now make use of the fact that a maximum amount of certainty (no ambiguity,
therefore, )L = 1) exists at the peaks and a maximum amount of uncertainty (therefore, L =0.5) at
the valleys of the histogram. We consider, therefore, these valleys at the crossover points w1th
w=0.5 and we can thus decimate the entire intensity range [x,,,x)] into several regions,
R,, R, -~ R, with each region being separated by points of maximum uncertainty.

A histogram given over an intensity range [x,,, X ] with k- valleys, x,,q =1,2 k can
be decimated, therefore, into (k+1) regions. R,,q =0, 1 -k, where each region is bounded by
the adjacent crossover points.

The Multi-Region Mapping Function, ®[x ]

The main objective in a gray digital image edge detection problem is to decimate any two
adjacent intensity levels. Decimation of two adjacent intensity regions can be done by letting
the intensity level of one region go to 0 (dark) and the other to 1 (maxium brightness). This pro-
cess of decimating two adjacent regions into two distinct intensity levels can be achieved by,

alternatively, mapping the regions Rg, R, - R; in the histograms, Figure 5, ‘low and high’ or
‘high and low’ intensity profiles.

Using the alternate ‘low and high’ intensity profiles, we may define a multi-region mapping
function as

k
Dlx]= U M, (x) (82)
q=0

where M, (x ),q =0, 1k, are defined as follows:
(i) For the extreme left region, R,

Mo(x)'—"SLH (x,xm,xcl)

_xm
————x ), X, SX chr (8b)
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(i) ForregionsR;toR;_; .
Mq x)=nyy (x, Xeq» xcq+l)
X —X
=1 [1 + sin? t (———)] (8c)
2 Xeqg+1 ~ Xeq
forg =13, 5 -, odd numbered regions, over x,; SX S X4, and

Mq x) =XLH (x, xcq ’ xcq+l)
X —X
=L —sin? n (——52y), @d)
2 Xeq+1 ~ Xeq

for g =2, 4, 6 - even numbered regions.
(iii)) For the extreme right region, R;,

Xy +X —2x
[l—siz-;ll —-b!;——-;——’ﬁ-)], for x; <x <x); and k =even
M~ Xk

M (x) = (8e)

Xy +x —2x
sinzg— %—k), for x, <x <xy and k =odd.
M~ *k

Figure 5 shows such a multi-region mapping function ®[x].
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Fig. 4 K-modal Histogram For Intensity Profiles of a Grey Level Image.
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Fig. 5 Mult-Region Mapping Function, ®[x].
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2.3 Some Fuzzy Operations

The notion of graded membership that was introduced in Section 2.2 plays an important
role in many fuzzy mathematical operations that are not to be found in ordinary set theory [4, 9].
We now consider a fuzzy set A as a ‘representational image.” This notion permits the advance-
ment of the concept of image processing in the ‘spatial-perception domain’. Such an approach
gives a new meaning to the membership p, (x) of an element x € X. In this approach one
assigns a membership to ‘gray levels’ between non-membership (i, (x) =0) and full member-
ship p, (x)=1). A black and white television picture is a fuzzy subset of the white screen (or the
black screen). Thus, one can think of focusing, of concentrating, of dialating, of contrast
intensification, and of blurring a fuzzy pixel of an image.

Let A be a fuzzy set of X with membership p4 (x), x € X, and then let us define the contrast
intensification operation.

The INT (A) operation has the effect of increasing the membership if it is greater than 0.5
and decreasing it if it is less than 0.5. Thus, the INT (A ) operation is

[ | 2(u2@) 1x}, forall x such that 0 <y (x) < 0.5
< eX

INT(A) =< &)
| f1-20-p,x)? I x}, forall x such that 0.5< p, (x) <1

xeX

This operation reduces the entropy and therefore is very useful in image processing prob-
lems such as image enhancement and edge perception.

3. Image Ambiguity, Perception-Domain Transformation and Contrast Intensification

Let Y be a discrete image in a two-dimensional spatial domain with L gray intensity levels.
This image can be represented by a two dimensional data matrix of order M x N having an indi-

vidual pixel y,, , in the position defined by the mth row and the nth column. Thus, we define
the digital image Y as

Y=Lym‘n]MxN9 m=1’2s M; n=1729."N9 (10)
where the pixel y,, , has L possible intensity (brightness) levels, / =0, 1, - L — 1, for which

[ =0 corresponds to completely dark and / =L — [ to completely white gray levels.

In this paper, the problem of edge perception is viewed as a phenomenon of ‘perceiving’

intensity levels and then tracing the locus of the vectors which correspond to ‘significant
changes’ in these intensity levels.

In general, a picture may have k distinct intensity levels over (0, L — 1). The loci, there-
fore, correspond to (k + 1) distinct levels of changes in intensity. The problem addressed in this
paper involves, therefore, the tracing of k — loci of changes in the intensity level vectors, where
each locus corresponds to one edge in the image.

Figure 6 gives a functional block diagram of the edge perception system developed in this
paper. A brief description of the function of each block is given below.

I =[i; o 14 < the original gray level digital image (spatial - intensity domain);

Y =¥ nlpxv» the noise corrupted image (spatial - intensity domain);
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Fig. 6 Functional Block Diagram of Edge Perception System.

F = [fmanlmxy- the smoothed image, (spatial - intensity domain), f, , € [0, L — 1] inten-
sity levels;

®[x]: spatial - perception domain mapping function with (k + 1) threshold intensity
regions

A=Ay 4] Mx& , the transformed image into spatial - perception domain, A € [0, 1] levels of
perception;

CINT [x]: contrast intensification operator;

A =[A’,, »lyxy intensified image in spatial - perception domain, A,, , € [0, 1] levels of
perception;

EDG [x]: Edge detection operator;

& =& mnlrsvs Eman €0, 1] perceived - edges of the image.

3.1 Smoothing Operation

Consider a noise corrupted image Y given by
Y =[Ymnlu xn (11)

If we take the histogram of this noisy image, the distinct regions of the various intensity
levels may not be readily identifiable. This may be due to the diffusion effect of the noise on the
various pixels of the image. In order to reduce the effect of the noise in image processing, we
give a simple point averaging scheme taken over a window W, of size (¢ x ¢q). The size of
the window can be chosen arbitrarily depending upon the noise characteristics and image inten-
sity levels. Thus, the smoothed (m,n) pixel in the image can be defined as an average pixel
intensity over the window W, .,

fm.n= Z aij Yij» i’jEquq (12)

199

where o;; are the weighting coefficients such that

2, oy=1
WG’W
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3.2 Perception-Domain Mapping
Consider now the M x N smoothed image

F =[fmnlm xn> 13)

defined in the ‘spatial-intensity domain’. Let us define an operator @ which transforms this
image F into the spatial-perception domain A. Thus,

F=fmnlv _ D@ A= nlyrsns (14)
where ’

fman €10, L —=1]:  levels of intensity, (15a)
and

Amn €10,1]:  levels of perception. (15b)

We thus have the mapping operation
D: fpn€[0,L -11 >4, , €[0,1] (16)

We map the image from the spatial-intensity domain into spatial-perception domain using
the multiple region mapping function ®[x] defined in Eqn. (8). Thus,

P alxn =P U mn Iy a7

where x corresponds to intensities over the range O to (L - 1).

This mapping function decimates the entire intensity region into (k + 1) distinct regions
assigning alternatively the Low and High perception values, where Low ¢ [0, 0.5) and High
€[0.5, 1]. As explained in the description of the ®{x] mapping function, the crossover points
correspond to the valleys in the histogram.

Thus, this mapping from f,, , €[0,L — 1] to k,,, » €[0, 1] may be considered as an aggre-
gate phenomenon of perceiving the intensity levels of the gray digital image: thus, the name of
the mapping function ‘perception domain mapping’.

Now, as will be shown in the sequel, various operations involved in the process of edge

preception, are carried out in the spatial-perception domain rather than in the conventional
spatial-intensity domain.

3.3 Contrast Intensification

The assignment of alternate Low € [0, 0.5) and High € [0.5, 1] values to various intensity
regions of an image using the ® mapping function decimates the various intensity levels into
many adjacent perception regions. These decimated perception domain regions can be enhanced
further by using contrast intensification operators on the perceived pixels A,, ,,. Thus,

[x’m.n]M xN = CINT [xm,n]M xXN>» }‘"m.n € [0’ 1] (13)

In this CINT([A,, ,] operation, the pixel values in the Low range € [0, 0.5) are assigned very
low values over the range [0, 0.5), and the pixel values in the High range € [0.5, 1] are assigned
higher values over the range [0.5, 1]. Thus, intensification operation reduces the amount of
ambiguity further and, therefore, the entropy associated with each pixel. The ambiguity in the
image can be reduced sufficiently by a proper choice of the power index g.



151
4. EDGE PERCEPTION

The edge perception operator is employed on the fuzzy image in the spatial-perception
domain in order to define an edge between two adjacent intensity levels. This operation is per-
formed in the spatial-perception domain on the enhanced perceived pixels A, , €[0, 1], Eqn
(18).

Let [N pnlysvs Nma €10,1], be a2 M XN contrast intensified image defined in the
spatial-perception domain. Most of the pixels in the image [A',, , ]y are either in the low per-
ception range of [0, 0.5) or the high perception range of [0.5, 1]. However, some pixels have
intensity values in the neighborhood of the perception level = 0.5; these pixels introduce an
ambiguity because they are not crisply identifiable. Therefore, the decimination of two adjacent
intensity levels is marked by a ‘fuzzy boundary’.

In order to detect a pixel which is part of the boundary, or edge, it is necessary to perform a
min-max operation over a window W, of size (¢ X q). The size of the window will determine

the width of the edge in the perception domain. For micro edges, a small window of size (3 x 3)
is employed, while the edges in a textured region requires a larger window size.

Let £,, , be the magnitude of the perceived edge point, where the mapping &, , €[0, 1] of
A’ » € [0, 1] can be obtained by one of the following EDG[] operations defined as

(i) gm,n = | {x’m.n} -{max W }"’i,j}l’ (193)
Wexe
(i) Emp=1{Npn)—{min UN;;} 1, (19b)
Wexe
(Gii) Epn = {max \y N} —{min ) \;;} | (19¢)
W Wen

where (i, j)#(m,n) and (i,j)quxq,
k"'d' € [0, 1] and E_,m'n € [0, 1].

Finally the preceived edge locus with memberships over the real interval [0, 1] can be
defined as

Edge locus =\ )\ & ma- (20)

m n

This is the locus of all pixel points having ot; £ &', , < 0, where 0; and o, are the values
of &, , that bound the degree of edge perception.

Remarks

With this approach it is possible to introduce several levels of edges which correspond to
various ‘degrees of edge perception’. This concept introduces several advantages in the recogni-
tion process if the preceived edges are divided into various ‘perception-planes’, with each plane
bounded by a; and o; ., where i =1, 2 - k as shown in Fig. 7.
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For many recognition problems, the perceived edges can be readily divided into four equal
levels of primary edges (0.75 < §,, , < 1) secondary edges (0.5 <§,, , <0.75), tertiary edges
(025 <&, , <0.5), and finally no edges (0 <&, , <0.25). This division is arbitary, however,
and corresponds directly with the natural vision system which identifies the shape of an object
by first detecting the primary edges which are most clearly present in the scene. These edges are
visible at a glance and generally correspond to the overall outline of the object. Secondary edges
are those edges that are visible but require a closer look. Finally, the tertiary edges are those that
are difficult to see and, therefore, are visible only with great mental concentration. Edges
detected in the no edge perception-plane are generally the result of noise introduced by the
highly sensitive vision sensors, and therefore, contain almost no edge information.

.
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Fig. 7 The Various Degrees of Edge Perception.
5. RESULTS
The edge perception algorithm outlined in the previous sections was implemented on a
VAX 11/780 computer and a COMTAL Image Processing System. Original gray-level images
of 256 x 256 (M x N)) dimensions and of 256 gray levels were pfyocessed. For the edge percep-
tion operation the exponents of the various S and 1 mapping functions were set equal to 2. The
min - EDG [-] operator, Eqn (19b), was used to determine the magnitude of the perceived edges.

The resultant edge perception properties of two complex images are illustrated in Figures 8
and 9. The first set of imagery show a simulated staircase scene, which has seven discrete gray
intensity levels and is masked by Gaussian noise with ¢ =20. The second set of imagery
corresponds to a portrait of a woman.

Figures 8(a) and 9(a) show the original gray-level image while Figure 8(b) and 9(b) show
the images after perception-domain mapping and contrast intensification. Figures 8(c) and 9(c)
illustrate the various degrees of the perceived edge, &, , € [0, 1]. For display purposes, as the

perceived edge point, &, ,, approaches a membership of 1 the corresponding pixel becomes
darker.

The remaining images of both Figure 8 and 9 illustrate the edge points that exist in the vari-
ous perception-planes found in the respective images. Images in 8(d) and 9(d) show the per-
ceived edges which lie in the range 0.75 < &, , <1 and, therefore, correspond to primary edges.
Images in 8(e) and 9(e) are the edge points over the range 0.5 < §,, , <1, or the percieved edges
that lie in both the primary and secondary edge planes. Finally, images in 8(f) and 9(f) are those

perceived edge points, 0.25 < §,, , <1, which lie in the primary, secondary and tertiary edge
planes.
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Fig. 8 Simulated Staircase Image with Noise, 6 =20, g = 8.
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From these various perception planes it is demonstrated that fundamental shape description
can be adequately represented by a combination of various edge planes, rather than processing
all the existing edge data. Improved edge detail can be accomplished by extending the range of
perceived values.

6. CONCLUSIONS

In this paper we have presented the perception of edges of gray-level images. The percep-
tion of the edges is carried out at various perception levels and is different from the conventional
detection of edges in a binary sense. This method of perceiving the edge phenomenon is similar
to that found in the natural vision systems, and is found to be computationally very efficient.
Further work is underway for the perception of various other attributes of an image such as
colour and texture.
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