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1. INTRODUCTION

A generalization of classical boolean equation theo
ry consists in lattice valued relation equation theory,
DJ E?J EJE}] In this note we shall be concerned with
the problem of solving relation equations when the rela-
tions are valued on a lattice which is right-residuated
under an isotone binary multiélication.
We extend in this framework the results stated by Luce.
This Author in CZ] solve the equation AX = B where A and
B are boolean matrices and X is unknown. In [3] D.Rudeanu
stressed that analogous results can be stated in a Brou-
werian lattice. In this case also the greatest solution
is found by E.Sanchez (see [47]) .
Furthermore in this,note we stated some results concerned with

the set of solutions of the equation under discussion.
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2. LATTICE RELATION EQUATIONS
Let L be a complete lattice which is defined on a.
binary multiplication satisfying the conditions:

order~-preserving i.e.
a b =» xag xb and ax ¢ bx for every a,b,xe L;

L is righﬁ;residuated under this multiplication, i.e.
for a,be& L there exists the largest x such that ax < b;
we shall denote such x by a * b.

If X is a non empty set, F(X) ={A:X——9L}’is'the set
of L-sets (lattice valued sets) and if Y is another non
empty set, we define L-relation every element of F(XxY).
' Let R(L) be the set of L-relations, in R(L) a partial
order and two partial multiplications are defined like
this:

for A,BE F(X*Y) A ¢ B &> A(x,y) € B(x,y) for every
(x,7) € XxY; ' (3).

_ V4
AB=C & C(x,z) = vey (A({x,y) Bly,z))

= /\
(A ® B) D Jey (A(x,y) * B(y,z)) (4)

where A €F (XxY), BeEF(¥x27).
Lastly for A €F(XxY) the L-relation A-1, inverse of

1

A, is defined by A '€ F(YyxX) and A-1(y,ﬁ = A(x,y). From

(1) and (4) it follows:

Lemma 1. Let A€ F(X+xY) and Be F(XxY) A & B then AR < BR
for every R€F(¥xZ), and R'A & R'B for every R'e F(ZxX).
For A €F(XxY) and B&F(XxZ), let us consider the

(1)

(2)
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L-relatiSn inequation

AHLB, (5)
and the L-relation equation

AH=B ' (6)

where H is unknown, let us denote by

I(A,B) ={R€F(sz) / AX < B}

and

s(a,B) ={REF(¥xz) / AX = B}

the sets of solutions of (5) and (6) respéctively.

Proposition 1. I(A,B) is non empty and there exists its

largest element.

Proof. Let M =(m.). 1= A—1 * B, we will show M I(A,B).For
JJe m
(x,z) € ¥YxZ:

Miy,2) =/\ (Alx,y) * B(x,2)).
Xe X
Hence from (1)
(AM) (x,2z) = \/'(A(-x,y)M(y,z))\< \/ (A(X,y).(A(x,y) * B(x,2)))
yey veY | S
< \V/ B(x,z) -+ for éVery (x,z)€ XxZ.
veY

Now if R I(A,B), then ARgEB, therefore

(A({x,y) R{y,z)) £ B(x,z) for every xeX, yeY and z€ Z,
from (2) . g

R(y,z) & A(x,y) * B(x,z), for every xeX, ve¥, zeZ,

and then .

R(y,z) €« /A (a(x,y) * B(x,z)) = M(y,z).
xe X o e
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Theorem 1. S(A,B) is non:empty iff M = INRNCE:

= (@.). € s(a,B).
i Je I (2,3)

Proof. Let S(A,B) # ¢ and Re S(A,B)S I(A,B), then

R & M and from

Lemma 1
B = AR 4 AM. (7)
From (7) and Proposition 1 it follows Me¢ S(A,B).

The vice versa is obvious.

Corollary. If S(A,B) is non empty then 27 @8
= max S{A,B).

Proof. Trivial.

Proposition 2. Let L be a complete lattice with a

binary multiplication which satisfies (1) and (2),then

a V. x = VYV (ax). (9)
0 w

we Q W w e
Proof. Set % = V (ax ), it is ax & X;
we Q w w
hence x & a * X for all weQ and V _ x £ a * X. From
w ‘ weQd W :
(1) it follows:
aV x cala*x) <x= NV (ax ) (10)
weQ W ~ weQ V¥
But ax ¢ a vV x for all weQ implies
w we Q w
w e (axw) £ a wen Xw - (11)

From (10) and (11) it follows (9).

Proposition 3. S(A,B) is a join semilattice.

Proof. 1Indeed let R,R'e€ S(A,B) then for every
(x,z) € Xx2Z

y\e/Y (A({x,y) R(y,z)) = B(x,z) (12)
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also

y\"/Y(A(x,y) R' (y,z)) = B‘(x,z). (13)

From (12) and (13)

Vo oax,y) Riy,2))) v Vo (ax,y) R (y,z)))

——

ye ¥ yeY
= YZ/Y,((A(X,Y)) Rly,z)) v (A(x,y) R' (y,z))) = B(x,z),

by Proposition 2

Y\e/Y (A(x,y) (R(y,z)V R'(y,2))) = B(x,z)

which is equivalent to RVR'€ S(A,B).

Proposition 4. If R', R"€ S(A,B) and R' ¢ R ¢ R" then
ReS(A,B).

Proof. Trivial from Lemma 1.

3. EQUATIONS OF FINITE RELATIONS

From now on we suppose that X =£x1,...,xn§
Y ={y1,...,§m} Z ={z1,...,zpj where X,Y,Z are finite
sets. We put I = $1,...,n3 the set of first positive
natural numbers. Let Ae F(XxY), Re F(YxZ), Be&eF(X»Z)
be L-relations. For the sake of brevity we put:

A(Xi,yj) = r Rly.,2.) = . , B(xi,z ) = b,, for eve-

244 5%k ik k ik _
ry i€I_, jelI , ke I_. Furthermore, for any hel_ we
n m P P

denote by Rh the h-th column of R and by Bk the k-th

column of B, for every'k:eIp; It is evident that Rh and
Bk are elements of F(Yxézh} ) and F(Xx{zk}), respecti-
vely. We observe that for any k eIp we can consider the
equation -

A H-= Bk (14)
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where ‘H is- unknown. Thgn tﬁe problem of resolﬁtion of

Eg. 6 leads back to soivefp equations as (14). Therefo
re, we limit ourselves to the study of Eg. 6 when p=1.
Thus every R F(¥x{z}) will be denoted by rj for every

J € Im and every Be€ F(Xxjz§) by bi for every ie In.

= = 'e 'e . .
Let A (aij) B (bi), i In’ 3 Im For every matrix
over L a = (aij) such that
V4 _ .
jer o 5 b, v ieI (15)

we’ consider
X = a..g' and
1]

HO‘:m g%

] ierI i
J € n

Theorem 2. S(A,B) is non empty 1ff there exists a matrix

(aij) fulfilling (15) and such that H? 7 @ for every je Im.

Proof. Let S(A,B) # ¢ and R(r1,...,rm)e S(A,B) then

.\/ a.. r, = b, for every i€I_. Set a,. = a,.r., the
Jé Im i3 3 i n i3 i3 3
matrix (aij) fulfills (15); therefore rjé Hq that is not

J
empty.
Conversely, let a = (a,.) be a matrix fulfilling (15) with

1)

H? # @ for every j eIm, then any L-relation R(r

with rje'Hg is obviously a 'solution of Eg. 6.

1,...,rm)

If we denote by /M (A,B) the set of the matrices o = (aij)
fulfilling (15) with H‘]" # @ for every jeI , then the
Theorem 2 characterizes the set of the solutions of Eg. 6
as _
S(A,B) = \-/ (Ho x ...xHY).
- a€/\(a,B) | n

We can verify that such a set, if not empty, has the lar-



101

gest element which is.k-1CD B. In fact, let
= o a .
R = (J:,l re oo ,rm) & Kg (H1 X oo XHm) , then #here exists

a matrix a fulfilling (15) such that a,, r. = a,.< b,
. i3 3 s 1
for every ie¢ In and jeIm. It results r.

1 h iel +J
that is R ¢ (A  ®B). We have still to n

prove that (A_1 ® B) belongs to \g (H?x ce *Hi). For

brevity's sake we set (B, = A (a,. * b,) for every
iex_ *J 1
: n
Jely. :
Let a,. = a,. B. and R ¢ S(A,B), we have
RV V
. a,. B. > . a,. r. =b,
s
J&Im i3 3 JEIm i3 3 1

on the other hand

V vV V

* =
B, £ a,.la,. *b,) £ . b.=b,

. a,. B. .
J € Im ij "3 J eIm ij i3 i m

from (16) and (17) it follows:

V Vv
jer %5 T s5er 235 By by
J m m

and, for this very definition of (aij), Bje H? V je %n’
All that we have just proved is in accordance with the
results of Theorem 1 and its Corollary.

The use of the Theorequ consists in bringing back the
study of solutions of Eq. 6 to the one of the set
s*(a,B) = © X...AXH;, for every a € J\ .

1
Let us observe that if S(A,B) # 0 then for every jeI

< /\ (a.. *b.),
1

(16)

a o N m
Hj has the greatest element mj = ie1 (aij*-a..) and
: o
hence ma = (m?)j - is the greatest D element of S (A,B).
8 ¢
The following propositions hold:

Proposition 4. Sa(A,B5 is a join-semilattice, for every aefN
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Proof. Trivial from Proposition 2.

Proposition 5. For every o ej&)sa(A,B) is a convex

set .

Proof. Let P = (p.) ). P <R =(r.). <
P j'ier ! T~ JJeIm\Q

. r @ = (g
jelI "

m

o
and P,Q¢ S (A,B) then for every ig In' jeIm it is

a,.p. La,.r,. La,..q. =>a,.<a..r. <a.. =>
i3P5 S #1475 X 1395 ij ~ 71373 s i3
a..r, = a,. <& Resam”m.
i) 3] 1) .
Let us put a* = (a*.) where a* = a, .m, for every i€ I
ij i35 n

and je¢ Im we have the foilowing

*
Corollary. Let R'& S(A,B), ReS® (a,B) and R < R' then
*
R'e s© (A,B).

Proposition 6. If for every a,x,ye L it is a(xAy)=axaay

then S%(aA,B) is a lattice, V ae A .

Proof. Let P = (pj). and P,Qesa(A,B)

Q = (qg.).
_ J° ] eIm

so (PA Q) € s%(a,B).

From that and from the Proposition 4 the thesis follows.
Here we just stress that if L is a Brouwerian lattice,
where xy is defined as xA y then for every a.eﬂv Sa(A,B)

is a lattice.

4. MINIMAL SOLUTIONS

Let us observe that if the set S(A,B) has minimal
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solutions, each of them is a minimal solution in the
respective set s%(a,B) to which it belongs. So, the mi
nimal solutions of S(A,B), if they exist,'are to be
looked for among the minimal elehents of the sets Sa(ﬁ;é);
The proposition below and its corollary give a partial

answer to this problem.

sy o4 . ..
Proposition 7. If (uj)j £1 is a minimal element of
SG(A,B) and (aij) is a n minimal element of‘fxiA,B),
then (u?)j él.is a minimal element of S(A,B).

m .
Proof. Let R = (r1,...,rm)€=S(A,B) and rj < u? for every
1
jéI_. 1f Res” (A,B) then from (1) it is a', < o, for
m 1] i3

1 € ] € .= a,. fo
every i In and jJ eIm, by the hyzotheses aij - alj r
every ieI and j€I . Then Re¢S and r, = pu, for any

n m 3 j

ngm.

Corollary. For any matrix (aij) which is a minimal element
of 1\(A4B).it holds that (ug)jé.l is a minimal element
of Sa(A,B) if and only i it is a m minimal element of

sS(a,B).
Proof. Trivial.

One can wonder if the minimal solutions that Proposition 7
and its Corollary exhibit, exhaust the set of all minimal
solutions c¢f S(A,B). Under the considered hypotheses we
have not an answer to this question. However, it is possi
ble to give an affifmative answer under the further con-
dition of the finite distributivity of the product with

respect to A operation, i.e. for every a,x,yelL

a(x Ay) = ax Aay.
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Suppose that (18) is vélid, then holds the

Proposition 8. If (u?)j Im
S(A,B), then it is a minimal element of Sa(A,B) and

o = (aij) is a minimal element of ./\_ (A,B).

Proof. The first part of the thesis is obvious, let
prove the second one. Let a' = (aij) € .A_ (A,B) and
ij >

then it results

V V V

L= L al. LAl y . el %is £ o, .
i Je Im ij l]o jeIm {30& ij jeIm ij

[} . . . . .
a < aij for every 1e—,In and' Jé,Im. Let us fix joé

b

for every ie In' and

P . L .. = b,
i3, v j CIm- ijolx alj i

for every ié€ I - So the matrix o" = (a;j) defined by

§

aij if j éIm— éjo
a;j =
. X C - 4

aij if j jo
all a a"
belongs to (A,B). H, =H, if jeI - 2] and H, =
s to \ e 12 31, - 13, ana 5

* 1)

Furthermore, x¢ Hc; and y eHc; imply

@ (@)

a.. (xany) =a,. xAa,, y=a,.Aa', =a',
ijg i3 ij, i3 0 i3, i3
f L ]

is a minimal element of

us

= b,
i

ier_,
n

SO u? NIr. e H(; for every r. € Ho.( . Then the relation

o Io o} Jo o)
R = (;1 Peee ’;m) defined as follows:

a

" if jer - 335

3

J ’ a
K.

J

a
Ar, if Jj=j and r.L6 € H.
Jo o Io J

o



105

belongs to s® (A,B) and cénsequently it belongs to

S(aA,B). But ;j < u? for every j €I_, thus from the

minimality of (u?)j ‘in S(a,B) we have

el
T =u% Az, =% and then u°. £ r, and
Jo o o Io o Jo
a,, ga!, i.e. a,, =a!. for every i€I . From the
13, iy ij ij n

genericity of the index jo the thesis follows.

The foregoing statements are utilized in the following:

Theorem 3. Let L be - a complete lattice satisfying (1),
(2) and (18), R = (u?,{..,u;) Sa(A,B), then R is a mini-
mal element of S(A,B) if and only if it is a minimal ele-

ment of Sa(A,B) and a = (aij)is a minimal element of

/\ (a,B).
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