FINITE ROUGH SETS AS PROBABILISTICLIKE FUZZY SETS.

(Nicola Umberto ANIMOBONO - ROMA / Italy)

Pawlak [1] introduce the concept of <u>rough set</u> and he [2] show that the rough sets are not reducible to <u>fuzzy sets</u> [3] expressed by three-valued membership functions and the their basic set-theoretic operations are not compatible.

On the contrary, Wygralak [4] show that the rough set theory can be expressed in 3-valued fuzzy set theory language using https://doi.org/10.1001/journal.org/<a> defined operations.

Here, finite rough sets are expressed by means of fuzzy sets and probabilisticlike operators.

<u>Key-words</u>. Triangular norms, probabilisticlike operators, fuzzy sets, rough sets, boolean, zadhean, pawlakean.

Notations. *A is the cardinality of the (crisp) set A;

V is the <u>sup</u> (or <u>max</u>, if finitely) operator;

A is the <u>inf</u> (or <u>min</u>, if finitely) operator.

A. FUZZY SETS.

1. Fuzzy sets.

Let Ω be a universe of discourse, Λ a lattice and $\Lambda^{\Lambda} = \{ \Lambda^{-} \} \Lambda$ the totality of the maps from Λ to Λ .

Def. The 3-tuple $\widetilde{F} = (\mathfrak{A}, \Lambda, \Lambda, \stackrel{\mathcal{M}}{\longrightarrow} \Lambda)$ is called <u>zadhean</u> fuzzy set \widetilde{F} and the map μ is called <u>fuzzy membership</u> function of \widetilde{F} .

The collection $\mathcal{Z}_{\Lambda}(\Omega) = \{(\Lambda, \Lambda, \mu) | \mu \in \Lambda \}$ is called fuzzy zadhean of Λ (i.e. the totality of the fuzzy sets \tilde{F} in Λ in the sense of Λ).

Remarks. For short but improperly, we write also $\tilde{F} = (\Lambda, \Lambda, \Lambda \xrightarrow{\tilde{F}} \Lambda)$ where \tilde{F} represent the fuzzy set and its membership function.

When we considere the subset $\Lambda_o = \{0,1\} \le \Lambda$, the 3-tuple $(\Lambda,\Lambda,\Lambda\to\Lambda_o)$ is called <u>cantorian fuzzy set</u> and the subset $\mathcal{R}_{\Lambda}^{\sigma}(\Lambda) = \{(\Lambda,\Lambda,\mu) | \mu \in \Lambda_o^{\Lambda}\}$ is called <u>fuzzy boolean</u> of Λ .

Through isomorfisme, a cantorian fuzzy set is a <u>crisp</u> set of Ω and the fuzzy boolean is the <u>boolean</u> $\Omega(\Omega) = \{A \mid A \subseteq \Omega\}$ (totality of the parts of Ω).

Here, we considere the lattice $\Lambda = [0,1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$.

3. Triangular norms [5].

<u>Def.</u> A binary operation * in the real unit interval [0,1], i.e. a function $T: [0,1] \times [0,1] \to [0,1]$, is called <u>triangular norm</u> (shortly, <u>t-norm</u>) iff it satisfay the following conditions:

- i) a * (b * c) = (a * b) * c,
- ii) a * b = b * a,
- iii) $a * b \le c * d$ if $a \le c$ and $b \le d$,
 - iv) $a \times 0 = 0$ and $a \times 1 = a$.

The dual binary operation \bigcirc , i.e. a function S: $[0,1] \times [0,1] \rightarrow [0,1]$, defined by: $a \bigcirc b = 1 - (1-a) \times (1-b)$, is called $\underline{t-conorm}$: it fullfills the conditions i)ii)iii) and iv') $a \bigcirc 1 = 1$, $a \bigcirc 0 = a$.

Moreover, if \star is distributive, then: $a \otimes b = a + b - a \star b$.

Examples. Important examples of t-norms T and their t-conorms S are:

$$\begin{aligned} & \underbrace{ \left\{ \begin{array}{l} \mathbf{T}_{\mathbf{W}}(\mathbf{a},\mathbf{b}) = \left\{ \begin{array}{l} \mathbf{a} \bigwedge \mathbf{b} & \text{if aV b} = 1 \\ 0 & \text{if aV b} \leqslant 1 \end{array} \right. \\ & \underbrace{ \left\{ \begin{array}{l} \mathbf{a} \bigvee \mathbf{b} & \text{if a} \bigwedge \mathbf{b} = 0 \\ 1 & \text{if a} \bigwedge \mathbf{b} > 0 \end{array} \right. \\ & \underbrace{ \left\{ \begin{array}{l} \mathbf{T}_{\mathbf{Z}}(\mathbf{a},\mathbf{b}) = \mathbf{a} \bigwedge \mathbf{b} \\ \mathbf{S}_{\mathbf{Z}}(\mathbf{a},\mathbf{b}) = \mathbf{a} \bigvee \mathbf{b} \end{array} \right. \\ & \underbrace{ \left\{ \begin{array}{l} \mathbf{T}_{\mathbf{b}}(\mathbf{a},\mathbf{b}) = \mathbf{a} \bigvee \mathbf{b} \\ \mathbf{S}_{\mathbf{b}}(\mathbf{a},\mathbf{b}) = 1 \bigwedge (\mathbf{a} + \mathbf{b} - 1) \right. \\ & \underbrace{ \left\{ \begin{array}{l} \mathbf{bounded difference} \\ \mathbf{bounded sum} \end{array} \right. \right\} } \end{aligned} } \end{aligned}$$

E4)
$$\begin{cases} T_{p}(a,b) = a \cdot b & \boxed{algebraic \ product} \\ S_{p}(a,b) = a + b - a \cdot b & \boxed{alg.(or \ probabilistic) \ sum} \end{cases}$$

Remarks. We can define a partial ordering $\langle \$ on t-norms, with: $T \langle T'$ if $T(a,b) \leq T'(a,b)$ $\forall (a,b) \in [0,1] \times [0,1]$.

If \mathcal{T} is the family of all t-norms, results: $T_{\mathbf{W}} \leq T \leq T_{\mathbf{Z}} \quad \forall \ T \in \mathcal{T}$;

and for the dual family 8:

3. Fuzzy set-theoretic operations.

Let be $\widetilde{\mathcal{A}} = \widetilde{\mathcal{A}}_{\Lambda}(\Omega)$ the zadhean of Ω . If \widetilde{A} , $\widetilde{B}_{\ell}\widetilde{\mathcal{A}}$, we define: \widetilde{A}' complement of \widetilde{A} , $\widetilde{A} \cap \widetilde{B}$ intersection of \widetilde{A} and \widetilde{B} , $\widetilde{A} \cup \widetilde{B}$ union of \widetilde{A} and \widetilde{B} in the following way:

 $\tilde{A}' = \tilde{C}$ where $\tilde{C}(x) = 1 - \tilde{A}(x)$ $\forall x \in \mathbb{N}$, $\tilde{A} \cap \tilde{B} = \tilde{D}$ where $\tilde{D}(x) = \tilde{A}(x) \times \tilde{B}(x) + x \in \mathbb{N}$, $\tilde{A} \cup \tilde{B} = \tilde{E}$ where $\tilde{E}(x) = \tilde{A}(x) \otimes \tilde{B}(x) + x \in \mathbb{N}$, with \times and \otimes t-norm and dual t-conorm. respectively.

In particular, we have:

ру	set-th. operator	expressed	by	with algeb. operator
E 2	\cap	t-norm Tz		٨
" <u> </u>	_ <u>U</u>	_	S _z _	<u> </u>
E3	\bigcirc	t-norm	Тb	9
H	U		S _b	\oplus
E4	•	t-norm	T _p	•
") — —	- -	t-conorm	S _p	+

Results: $\widetilde{A} \cap \widetilde{B} \subseteq \widetilde{A} : \widetilde{B} \subseteq \widetilde{A} \cap \widetilde{B} \subseteq \widetilde{A} \cup \widetilde{B} \subseteq \widetilde{A} : \widetilde{B} \subseteq \widetilde{A} \cup \widetilde{B}$. Zadeh in [3] use the t-norm T_z and t-conorm T_z .

4. Fuzzy [sub] spaces.

The algebraic system $\widetilde{\mathcal{J}} = (\widetilde{\mathcal{L}}, \mathcal{U}, \Lambda, \cdot)$ is called fuzzy space, while $(\widetilde{\mathcal{L}}, \mathcal{U}, \Lambda, \cdot)$ is called fuzzy subspace when $\widetilde{\mathcal{L}} \subseteq \widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{L}}$ is closed for \mathcal{U}, Λ and \cdot . The fuzzy [sub]space $(\widetilde{\mathcal{L}}, \widehat{\mathcal{L}}, \widehat{\mathcal{L}}, \widehat{\mathcal{L}}, \cdot)$ is called probabilistic fuzzy [sub]space.

B. ROUGH SETS.

Let Ω be a universe of discourse, $\mathcal{B} = \mathcal{B}(\Omega)$ its boolean and $\Omega = \Pi(\Omega)$ the totality of its partitions. It is know that if $n \in \Omega$ then is $n \in \Omega$, i.e. \mathcal{F} the immersion map $i_n : \mathcal{N} \to \mathcal{B}$ such that $i_n(\alpha) = \alpha \quad \forall \quad \alpha \in \mathbb{N}$. Let $n \in \Omega$ be (\mathcal{B}_n) is the equivalence relation associated to Ω and, in this section, \mathcal{B}_n is called <u>indiscernibility relation</u>).

Let $[\]_{\eta}$ be the map $x \to [x]_{\eta}$ so defined: if $x \in \Omega \ni 1$, and only $1, \eta_x \in \eta$ such that $x \in \mathcal{R}_x \subseteq \Omega$; $[x]_{\eta}$ is called equivalence class of x in the sense of η .

1. Pawlak's rough sets.

<u>Def.</u> If $\underline{P} \subseteq \overline{P}$ and $\underline{P}, \overline{P} \in \mathcal{N}$, the couple $\underline{P} = (\underline{P}, \overline{P})$ is called Pawlak's <u>abstract rough set</u> (in Ω in the sense of \mathcal{N}); while if $\underline{P} \subseteq \Omega$, the subsets of Ω :

$$\underline{P} = \underbrace{[x]_{\pi}^{\subseteq} P} i_{\pi}([x]_{\eta'}) , \overline{P} = \underbrace{x \in P} i_{\eta'}([x]_{\eta'})$$

define the triple $P = (P, P, \overline{P})$ called Pawlak's concrete rough set and the set P is called its support.

The set P = P - P is called the <u>rough boundary</u>.

The couple $\theta = (\Lambda, \pi)$ is called <u>approximation space</u> of Λ in the sense of γ .

The collections $\hat{\mathcal{F}}$ and $\hat{\mathcal{F}}$ of all \hat{P} and \hat{P} are called the abstrct and concrete pawlakean of n, respectively.

2. Rough set-theoretic operators.

From here we only deal the concrete pawlakean $\mathcal E$.

If A, Be ?, results:

 $\underline{\tilde{A}} \cup \underline{\tilde{B}} \subseteq \underline{A} \cup \underline{B} \subseteq \underline{A} \cup \underline{B} \subseteq \overline{A} \cup \overline{B} = \overline{A} \cup \overline{B}$ and

 $\underline{A} \cap \underline{B} = \underline{A} \cap \underline{B} \subseteq \underline{A} \cap \underline{B} \subseteq \overline{A} \cap \overline{B}$.

From this inclusions it is clear that if we want to define in \widehat{C} the set-theoretic operators "union", "intersection" and "complementation", we dont meet a natural formulation, because $\underline{A} \cup \underline{B} = \underline{A} \cup \underline{B}$ and $\overline{A} \cap \overline{B} = \overline{A} \cap \overline{B}$ not hold in general case. But if we privilege the support set and its set-theoretics operators, we can define in natural manner the rough operators \bigcup , \bigcap , \neg . We pose:

where
$$C = \{\Omega - A, \Lambda - \overline{A}, \Lambda - \underline{A}\}$$
, $A \sqcup B = D$ $D = (A \cup B, \underline{A \cup B}, \overline{A \cup B})$, $A \sqcap B = E$ $E = (A \cap B, \underline{A \cap B}, \overline{A \cap B})$.

The algebraic system (f, \downarrow , \sqcap , \neg) is called rough space.

C. ROUGH SETS AS FUZZY SETS.

In the rough and fuzzy set theory the main idea is the membership predicate. In this theories one can say that x surely or possibly belongs or surely not belongs: the difference between Pawlak's and Zadeh's theorys consiste in the various meanings of the word "possibly". For Pawlak the possible-membership values are ill-know, for Zadeh this values are know, gradual and notequals If we give a constant value for the rough-possible, the rough settheoretic operators can modifier this value; on the contrary the max and min operators dont modifie the corresponding fuzzy-possible value. Consequently it is necessary to find a good link between rough-membership value and fuzzy-membership value.

1. Representation problem.

Let \mathcal{L} be a universe of discourse and \mathcal{L} , $\widetilde{\mathcal{L}}$, $\widetilde{\mathcal{L}}$ its boolean, pawlakean and zadehan, respectively. Moreover, $\widetilde{\mathcal{L}} = (\widetilde{\mathcal{L}}, \widetilde{\mathcal{L}}, \widetilde{\mathcal$

are any associated algebraic systems.

If we want to find a connection between rough and fuzzy sets, we meet the classical representation

Problem: is it possible to find a map $\omega: \mathcal{E} \to \tilde{\mathcal{F}}$ such that:

$$- \omega (\widetilde{A} \widetilde{U} \widetilde{B}) = \omega (\widetilde{A}) \omega (\widetilde{U}) \omega (\widetilde{B}) = \widetilde{A} \widetilde{V} \widetilde{B}$$

$$- \quad \omega \ (\widetilde{A} \ \widetilde{n} \ \widetilde{B}) = \omega \ (\widetilde{A}) \ \omega \ (\widetilde{n}) \ \omega (\widetilde{B}) = \widetilde{A} \ \widetilde{n} \ \widetilde{B}$$

$$- \omega (\ddot{\vec{A}}) = \omega (\ddot{\vec{A}}) \omega (\ddot{\vec{A}}) = \tilde{\vec{A}}^{\dagger} ?$$

Naturally the starting point stand in the association between \tilde{A} and $\tilde{A} = \omega(\tilde{A})$, whence it is necessary to find a good membership value in \tilde{S} , when $x \in \underline{A}$, $x \in \tilde{A}$, $x \in \Omega - \overline{A}$.

Now we go to examine this problem through the Pawlak's and Wygralak's approachs.

A natural way consist in $\stackrel{\dots}{A} \xrightarrow{\omega} \stackrel{\nearrow}{A}$ where:

$$\tilde{A}(x) = \begin{cases} 1 & \text{when } x \in \underline{A} \\ 0 & \text{"} & x \notin \overline{A} \\ 1/2 & \text{"} & x \in A. \end{cases}$$

In this manner, Pawlak [2] examine the present problem in the case ($\ddot{\ell}$, \Box , \sqcap , \neg) and ($\ddot{\ell}$, \bigcup , \cap , \neg), where the answer is negative: he remarks that

$$(\omega (A \cup B))(x) \neq \max (\tilde{A}(x), \tilde{B}(x))$$
 and $(\omega (A \cap B))(x) \neq \min (\tilde{A}(x), \tilde{B}(x))$ in the general case.

Against this handicap, Wygralak [3] instead propose https://doi.org/10.1001/journal.com/ defined operators.

2. Wygralak's rough operators.

Here we repeat the Wygralak's metations propositions and their notations, where U is the universe of discourse.

Proposition 1. - For any rough sets Y, Z and for every xeU:

$$(Y \prod Z)(x) = \begin{cases} \max (0,Y(x)+Z(x)-1) & \text{if } Y(x)=Z(x)=1/2 \text{ and} \\ [x]_{\mathcal{R}} \cap (Y \cap Z) = \emptyset \\ \min (Y(x),Z(x)) & \text{otherwise.} \end{cases}$$

Proposition 2. - For any rough sets Y, Z and for every xeU:

$$(Y \sqcup Z)(x) = \begin{cases} \min (1,Y(x)+Z(x)) & \text{if } Y(x)=Z(x)=1/2 \text{ and} \\ & [x] \subset Y \cup Z \\ \max (Y(x),Z(x)) & \text{otherwise.} \end{cases}$$

Because in 1Top and 2Top is altways Y(x)+Z(x)=1, we can give a semplified formulation of Wygralak's propositions.

$$\forall$$
 $\vec{A}, \vec{B} \in \vec{\mathcal{G}}$ and \forall $x \in \Omega$, if $\omega(\vec{A}) = \vec{A}$, results:
$$(\omega(\vec{A} \sqcap \vec{B}))(x) = \begin{cases}
0 & \text{if } x \notin \vec{A} \cap \vec{B} \\
\vec{A}(x) \land \vec{B}(x) & \text{otherwise;} \\
(\omega(\vec{A} \sqcup \vec{B}))(x) = \begin{cases}
1 & \text{if } x \in \vec{A} \cup \vec{B} \\
\vec{A}(x) \lor \vec{B}(x) & \text{otherwise.}
\end{cases}$$

This formulation avoide the expression "heteregeneously defined operations".

3. Finite probabilisticlike fuzzy space.

Let Ω be a <u>finite</u> universe of discourse, $\mathcal B$ its boolean, $\mathcal B$ its zadehan and $\mathcal A \in \mathcal N$ a partition of $\mathcal A$.

 $\forall \ \mathbb{F} \in \mathbb{G}$ we pose this map: $\bigwedge \xrightarrow{\mu_{\mathbf{F}}} \bigwedge$ so defined:

$$\mu_{\mathbf{F}}(\mathbf{x}) = \frac{\#([\mathbf{x}]_{\mathbf{Y}} \cap \mathbf{F})}{\#[\mathbf{x}]_{\mathbf{Y}}} \quad \forall \mathbf{x} \in \Omega.$$

Results: $\tilde{F} = (\mathfrak{I}, \Lambda, \mu_{F}) \in \widetilde{\mathcal{F}}$ and $\tilde{F}' = (\mathfrak{I}, \Lambda, \mu_{K-F})$. Moreover, if $A, B \in \mathcal{B}$ we can define a t-norm T:

$$M_{A}(x)$$
 $M_{B}(x) = \frac{\#([x]_{T} \cap (A \cap B))}{\#[x]_{T}}$

and its t-conorm 1:

$$\mu_{A}(x) \perp \mu_{B}(x) = \mu_{A}(x) + \mu_{B}(x) - (\mu_{A}(x) \perp \mu_{B}(x)) =$$

$$= \frac{\#([x]_{R} \wedge A) + \#([x]_{R} \wedge B) - \#([x]_{R} \wedge [A \wedge B))}{\#[x]_{R}}.$$

The corresponding algebraic system $(\hat{z}, \hat{1}, \hat{T}, \cdot)$ is a finite probabilisticlike fuzzy space, where in particular results: $\tilde{F}\hat{I}\tilde{F}' = \tilde{\Lambda}$ and $\tilde{F}\hat{T}\tilde{F}' = \tilde{\emptyset}$. In this space the fuzzy sets are expressed by 3-valued membership functions.

4. Rough sets as probabilistickike fuzzy sets.

Let Ω be a <u>finite</u> universe of discourse and \mathcal{P} \mathcal{P} boolean, pawlakean and zadehan, respectively; and moreover given the algebraic systems: $\ddot{\mathcal{E}} = (\ddot{\mathcal{P}}, \sqcup, \Pi, \neg), \ddot{\mathcal{J}} = (\ddot{\tilde{\mathcal{E}}}, \hat{1}, \hat{\tau}, ').$

Proposition. There is a map $\omega: \mathcal{Z} \longrightarrow \mathcal{F}$

1)
$$\omega(\tilde{A}U\tilde{B}) = \omega(\tilde{A})\omega(U)\omega(\tilde{B}) = \tilde{A}\hat{1}\tilde{B}$$

2) $\omega(\tilde{A}\Pi\tilde{B}) = \omega(\tilde{A})\omega(\Pi)\omega(\tilde{B}) = \tilde{A}\hat{1}\tilde{B}$

2)
$$\omega(\vec{A} \cap \vec{B}) = \omega(\vec{A}) \omega(\vec{D}) \omega(\vec{B}) = \vec{A} \hat{\vec{T}} \vec{B}$$

3)
$$\omega$$
 (\neg \tilde{A}) = ω (\neg) ω (\tilde{A}) = \tilde{A} .

If we write the diagram:

between & and b there is a 1-1 correspondance (trivially $\mathcal{B} \ni A \xrightarrow{j} (A, \underline{A}, \overline{A}) \in \widehat{\mathfrak{C}}$). Moreover, let q be the correspondance defined by $q(A) = \tilde{A}$, where its membership function is the map M_A defined in 3 of this section:

$$\times \xrightarrow{\mu_{A}} \xrightarrow{\#([x]_{r} \cap A)} \forall x \in \mathcal{I}.$$

Results: $\omega(A) = q(j(A)) = q(A) = A$ and 1),2),3) are satisfied.

5. Conclusions.

For Pawkak and Wygralak, when x stand in the rough boundary, its value is allways constant and equal to 1/2; in this papter it is constant but only into the equivalence class. Practically if we have, into the indiscernibility class, for every element, a non-principal know information (a measure), we can try an approach to the discernibility.

D. REFERENCES.

- [1] PAWLAK, Z. Rough sets <u>I.J.Inf.Comp.Sc.</u>
 11 (1982), 341-356
- [2] PAWLAK, Z. Rough sets and fuzzy sets <u>Fuzzy</u> sets Syst. 17 (1985), 99-102
- [3] ZADEH, L.A. Fuzzy sets <u>Inf.Control</u> 8 (1965), 338-353
- [4] WYGRALAK, M. Some remarks on rough and fuzzy sets <u>BUSEFAL</u> 21 (1985), 43-49
- [5] MENGER, K. Statistical metrics Proc.Nat.
 Acad.Sc.USA 28 (1942), 535-537