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Abstract: We study a symmetric fuzzy probability measure m,
i.e. a fuzzy probability in sense of Klement & all [2] posse-
ssing the complement property m(m) + mQMf) =1, We genera-
lize the results of Piasecki [4,5,7] on the Bayes formula for
fuzzy probability measures, Our generalization is built on the
notion of m-disjointness. We study Sp the smallest soft al-
gebra containing all m-Bayes fuzzy partitions for a symmetric
fuzzy probability measure m. The limit cases lead to the crisp
case, resp. to the Piasecki’s concepts.

l. Symmetric fuzzy probability measures

Originally a fuzzy probebility was introduced by Zadeh
in [8] . He started with a classical probability space ( X,d,P)
and he defined a fuzzy probability m by the following formula

m(m) = g(‘“‘“’ , pEF(L) (1.1)

Here a fuzzy subset A in X is described by its membership fun-
ction m : X-—[0, 1] . F(L) denotes the family of all Jd-
measurables fuzzy subsets in X, which will be called a genera-
ted fuzxy @& -algebra,

Klement, Lowen and Schwychla [2] define a fuzzy probabi-
lity measure on a fuzzy <-algebra G as the continuous from
below mapping m: € —[0 , 1] fulfilling the next properties:

m( lx ) = 1 (1-3)

f

m(/«Uv) + m((w/w)

m({“’) + m(Y) (104)
for each Y ES .
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Here U ,N\ are the fuzzy connectives of the fuzzy uniomsand
the fuzzy intersection.

It is easy to see that (1.,1) defines really a fuzzy pro-
bability in the sense of [2] for an arbitrary choice of fuzzy
union and intersection preserving the valuation property. Mo-
reover, if we use the classical complementationfuf= 1 -/L(I.S),
then (1.1) implies

m(/ﬂu’) =1 - m{w) ¥ e Fld) (1.6) .

Definition 1.1, A fuzzy probability measure fulfilling (1.6)
on ¢ will be called symmetric fuzzy probability measure,

In what follows we will deal with the fuzzy connectives
of union and intersection, which are commutative, associative,
distributive, continuous and increasing in both places, satjs-
fying

MOy =, oy = » MOVE My UVD P v €S (LaT) o
Bellman and Giertz [1] have shown that all these properties
are satistied only by the classical Zadeh s fuzzy connectives

MY = min ({\A.,V) (1.8)
M Uy = max '(/w,v) (1.9) .
To preserve the De Morgen laws we can take arbitrary comple-

mentation connective induced by the strong negations. In what
follows wd will use the classical Zadeh s complementation (1:5),

The problem of integral reprezentation of a general fuzzy
probability on a generated fuzzy & -algebra 6= F(d) was sol-
wed by Klement in [3] .

Thegrem l.1. ( Klement, [3] ) Let m be a fuzzy probability me-
asure on F(d4. ), Then there exist one and only one probability
P on ( X,4.) and a P-almost everywhere uniquely determined
Markoff-kernel K such that

¥ueF(d) mip) = i(x( x, [0, m(x)[) @ (x) (1.10).

Recall that a Markoff-kernel is a function
K: X —> |0 1 (1.11
*Bp 102 )
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such that following two conditions are fulfilled:

VBej}[O Jalt K(.,EB): X—[0, 1] is J_—_’Bmeasurablzl.lz)

¥xeX : K(x, . ): CB[O : 1[—->[o , 1] is a probability (1.13).

If for P-a.e. x€ X the probabilities (1l.13) are continuous,
i.e. they can be described by the density functions
k( x, « ): [0, 1[— R , then the kernel is continuous.

Thegrem 1,2, m is & symmetric fuzay probability measure on
F(Jd) iff m is of type (1.10) for a symmetric Markoff-kernel
K, iee. for a continuous Markoff-kernel K satj)sfying the fol-
lowing property:

for P-avey xe X,¥ y€]0 , 1[:

k(x,[0, yDD +k(x,f0,1-yD =1 (1.14).
The property (1.14) is equivalent to the following one:
for P-a.e. xe X ¥yel0 , 1[: k(x, y) =k(x,1~-y),
K( x,[0 , 1/2[) = 172 (1.15).
The only problem in proving the Theorem 1.2. is to show that
the symmetricity of m implies (1.14) or (1.15).
So let m be a symmetric fuzzy probability measure on F(d).
Denote by A the crisp subset of all xe¢ X, for which there is -
a yxe]o , 1[ such that
k( x,(0, 5,0 +k(x,f0,1-y[D<1 (1.16).
Define & fuzzy subset /M as
mix) =0, x¢4 , Mmx) =y , xEA (1.17).
Then
1= m(m) + m(W) = P(A) +£ K( x,[0 , 5, + (1.18)

+K(x,[0, 1~y D arlx),

which implies P(A) = O .
Similarly we get P(B) = O , where

B ={xeX,3y,70, 10, kK( x,[0, y,[) +K( x,0,1-y0>
1 F (1.19).
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Example 1,1, The Zadeh's fuzzy probability m defined by (1.l)
is a symmetric fuzzy probability measure,
VxeX,¥ye D, 1[: K( x,[0 , 9[) =y , k( x, y) =1 (1,20)

In what follows we will identify a symmetric fuzay pro-
bgbility meesure m with a probability P and a symmetric Mar-
koff-kernel K, even if fuzzy & -algebra @ is not a generated
fuzzy < -algebra, resp. G is only algebra, Farther we allow
a slight modification of the notion of symmetric Markoff-ker-
nel K according to the general fuzzy & -algebra ( fuzzy al-
gebra ) & , In this case we admit K( x, . ) =J‘l/2( ¢ )

( the Dirac distribution concentrated in 1/2 ) for all xeC,
Ced, such that for all m€éa , P(Du) = O , where
Dm ={xeC,m(x) =1/2 ¢} .

2. On_the Bayes formula

The mapping m( . /M ): & — (o ,:1] defined, for any
fuzzy probability measure m and for each M ES such that
m(M) # 0, by the identity

mly Nnm)
n(y //w) =z — , YEéS (2.1)

m(w)
is called a conditional fuzzy probability given/u..
Piasecki in [47] has defined & Bayes fuzzy partition
( briefly BFP ) of X as the system ( finite or countable )
{/‘Li% fel » (165 of fuzzy subsets satisfying the following
conditions:
(R1) the fuzzy subsets ‘5/“'1} are pairwise W-geparated, i.e.

/“15 1 = (% =(u,3 for every if J, i, Jel

(R2) m( = ) =1
™ Loy [

(R3) m(/wi) >0 for each iel .

A system {/«.i} of fuzzy subsets satisfying (R1l), (R2) and (R3)
will be called W-Bayes fuzzy partition ( W-BFP ) ,

Piasecki and Switalski in [7] have proposed another con-
cept of fuzzy disjointness:
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(Rla) the fuzzy subsets {/*i% are pairwise F-seperated, i.e,
/Kiﬂ M3 c:(l/z)X for every 1 £ j, 1, jel .

A system &Ki} of fuzzy subsets satisfying (Rla), (R2) and
(R3) will be called F-Bayes fuzzy partition ( F-BFP ) ,

We recall some of Piasecki’s definitions and results.,

Definition 2,1, Let Gbe a fuzzy algebra ( fuzzy S -algebra ).
If it does not contain the fuzzy subset (1/2)y then it is
called soft fuzzy algebra ( soft fuzzy & -aslgebra ).

Definition 2,2, Let G be a soft fuzzy algebra ( sot't fuzzy
G -algebre ), A fuzzy P-measure is a mapping p: 6 — [0 , 1]
such that:

for any mea: plm U/M.') =1 (2.2)

if g/“‘i}iel fulfils (R1) and sup /v.i € & then

(s ) = (pey) (2.3) .
Pgr) s ot

Any fuzzy P-measure is a symmetric fuzzy probability measure.
Note that it may be always define by means of (l 10), where

p(p) = ){Cﬁ/zFEO y 0D dP(x) = P(M>1/2 ) (2.4) .

The main results of [4, 5, 7] are expressed in the following
theorem,

Theorem 2.1, ( Piasecki, (5] ) Let m be a fuzzy probability
measure on a fuzzy G -algebra @ and G’ (= F ) be the smal-
lest soft fuzzy algebra containing all W-—BFP ( F-BFP ) gene-
rated by m. Then m satisfies the W-Bayes formula ( F-Bayes
formula ) on Sz iff it is a fuzzy P-measure on ‘o‘z .

Note that €" » the smallest fuzzy & -algebra containing all

W-BFP, may be not soft, so we can deal only with (-T\v G'i ’
which is always soft. Thus the results of [5] need to be re-

stricted to the e‘;
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Definition 2,3, Let m be a given fuzzy probability measure on
a fuzzy 6 -algebra & , &, & fuzzy subalgebra ( fuzzy sub-G =
algebra ) of € . Then m satisfies the W- ( F- ) Bayes formula
on &, iff for all V&g, m(Y) >0, and any {{v_i}la W-BFP

( F-BFP) jm jee » it holds

m( Yem(Y /M )

mlpey/y) = o= /“(l‘:) (.”/l‘ ) (2.5),
JmlYy .
ieIm("ti Mi

We propose another concept of fuzay disjointness depen-

dent on m ,
(R1b) the fuzzy subsets 5/“'1}1&1 are pairwise m-separated,
i.e. m(/uin (WJ.)‘ =0 for every i # 3, i, jeI .

A system%i} jer Of fuzzy subsets satisfying (Rib), (R2) and
(R3) will be called m-Bayes fuzzy partition ( m-BFP ) .,

In {77 is defined & strong ftuzzy P-measure as a measure of
Definition 2.2. where the (Rl) disjointness is replaced by
(Rla), Similarly we can define a full fuzzy P-measure.

Definition 2.4s. A4 fuzzy probability measure m is a full fuzzy
P-measure iff it fulfils Definition 2.2., where the (Rl) dis-
jointness is replaced by (R1lb).

Definition 2.5, A given fuzzy probability measure m satisfies
the m-Bayes formula on &, iff it fulfils-Definition 2.3.,
where the W-BFP are replaced by m-BFP.

Lemms 2,1, Let m be a fuzzy probability measure on a fuzzy al-
gebra ( fuzzy © -algebra )G . Let(w.ves‘ . Then:

a) if m ,v are W-separated, they are also F-separated

b) if m is a fuzgzy P~-measure and/u_ ,y are F-geparated,
they are also m-separated

c) if My are m-geparated, then there exist two F-sepa-
rated fuzzy subsets m*,v¥such that P( EpX) =0,
P(v #v*) =0 ( P is defined by Theorem 1.1, ); here
we suppose that m is a symmetric fuzzy measure,

Proof: a) is obvious, it does not depend on m.
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b) Let /vt-ﬂ\/C()./2)x . Then (/mv) U(/w;/\_v)': ((v.ﬂv)' .

As m is a fuzzy P-measure it follows by (2,2) m((/wnv )) =
=1 . Then (1) implies m{m/y) =0, i.,..e./»tandv are
m-separated, It was alsc possible to use (2.4),

¢) It is enough to prove P(/M./)v> 1/2 ) = 0 o For symmetric
fuzzy probability measure m if holds for all fuzzy subsets
m(m) 2 P(w>1/2)/2 , i.e. O = m(mnv) 2 P(mNV>1/2 )/2,

Note that the fuzzy P-measures and strong fuzzy P-measures
are equivalent[7] . Any fuzzy P-measure is also full fuzzy
P-measure but the inverse is not true,

Theorem 2.2, Let m be a fuzzy probability measure on & fuzzy
G -algebra G , Then m satisfies the m-Bayes formula on & ,

Proaf: The fulfilling of the m-Bayes formula on & is equiva-
lent to the validity of the next equation

¥veg: m(y) = EI m(vﬂ(wi) for arbitrary m—BFP-j/Wi}iéI

(2.6)
o/
iel (wi'

Let { M4}, .7 be a fixed m-BFP, V€& . Thenie‘l_w"f‘ €

and the valuation property (l.4) of m implies

n(vN U ay) =mnly) (2.7)
ser (1
We may assume I = {1, 2,...} . Then

and (1.4) implies

mnlv N (/VLIU/A,Z)) + a(vy N ((wlﬂ/w.z)f‘) =

My and (4o are m-separated (Rlb), m((v.lf\(wz) = 0, 8o that
m(Yy ﬂ(/wlu/wz)) = m(vﬂ/w, 1)+ m(vﬂ(wz) (2,11)

By induction it is easy to prove that for a finite I

= / = /\ eColle
n(Y) = m(vN iké/I(ui) igl m(v /\4.1) , Qee.d
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If I is countable, we utilise the continuity from below of m.
o :
Denote &', the smellest soft fuzzy algebra containing all

m-Bayes fuzzy partitions. The next theorem $i@w:if we reduce
our interest only to &', all three concepts m-, W- and F-
are equivalent for symmetric fuzzy probability measures,

Theorem 243, let m be a symmetric fuzzy probability measure
on a fuzzy & -algebra S, Then it is a full fuzzy P-measure
on E;mo

Proof: The soft tuzzy algebra n conaists of the elements of
one-element m-BFP with theirs complements and of the elements
of more numerous m-EFP.

a) Let (" ES m(m) = 0 or m(w) = 1. Then m(/wU/\m’) =1,
so that (2,2) is fulfilled. Now, let w &y m(M) € Jo, 1[.

Then there exists a m-BFP {(w i} iel ,(K- =/\41 « Denote

o/ =Y ¢Q o It follows that f Y is a m-BFP, y ¢

m(mUy) =1, m([wﬂv) = 0, Let

A ={xeX,m>v} , B={xexu=v} , ¢ = {xeX,m<v},
/“A =(vL.IA ( I‘ is the characteristic function ) etc,

Then the condition (Rlb) implies meB) = m((v.c) = m(frA) =
= m(V'B) =0 , ‘

From (R2) it follows that m((w.A) +mlyg) =1,

(R3) implies m(m) = m( ) > 0 n(y) = mlvg) >0 .

It is easy to see that P(A) = m((«), P(B) = 0, P(C) = m(Y) .
As m is a symmetric fuzzy probability measure, it follows
M(/VLA) + m((VL'A) = P(A), i.e. mg(ﬂt'A) = O, Similarly

m(/u,’B) = 0 and m(/\tc) = P(C)

Then *f/w,(w'} is a m-BFP and m(/v»U 'y =1, i.e. (2.2) is ful-
filled,
b) Let 5[“‘1}161 M 1ES satisties (Rlb). Now, we cean

repeat the ideas of the proof of the Theorem 2.2. to get the
equality (2.3)s ABG>E, » B 18 8 full fuzzy P-measure on Ge
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Note that on 6p the m- and F-concepts coincide P-a.e,

3. Symmetric fuzzy probability measures and the m-Bayes
fuzzy partitions

In this part we study the structure of the soft fuzzy
algebra &, « Let m be given by the probability space ( X,dl,
P ) and a symmetric Merkoff-kernel K by the formula (1.,10).
All the assertions below are valid in the P-a.e. sense. For
the sake of simplicity we will omit "P-a.e,” whenever possi-
ble. |

The symmetricity of K implies that either K( x, ., ) =

1/2( « )or K(x, . ) is a continuous probability measure,

inf {y: K(x,[0,y[) =1} -1/2 = 1/2 -
¥€]0,1]

- 8 fy: K(x,[0,y[) =0} =£_€70 , 1/2] (3.1)
ngr’:lty ,[0,¥[) =0} =g, €0, 1/2]

Put A ={1/2} in the first case, A, =]1/2 - £, 1/2 + §, [
in the second.
Theorem 3,1, Let m be & symmetric fuzzy probability measure.

Then the smallest soft fuzzy algebra Sp containing all m-BFP
is equal to the algebra G ,

6 = in PUxex, mx)ea ) =0} (3.2)

Proof: a) Let (LEGy o If m(m) = 0 or m(@) =1, it is ob-
vious that (V‘GQK . Let m(m)eJo , 1[. Then{/u,{w,}forms

a m-BFP . ml ') = 0 implies K( x, [0 ,(m)(x)[) =0 .
Similarly m(m U/K-) 1 implies K( x, [0 ,(aUpd)(x)[) =1 .
It follows (/W/‘/%)(x)éA and (/th/W')(x)ﬁA y lees

/‘& /u éG’K.SO we have G’CG"K.

b) Let m &Sy o Then m(/\&/\/w) =0, m(/th/vt) , 80 that

§/vn,/vx’}is for m((vL)€]0 , 1[ a m- BFP, (w,(u éG'm .
Therefore Gp = G’K . .

Corollary 3.1, &, 18 a soft fuzzy G-algebra iff
P({xeX, A, = {1/23}) =0 (3.3)
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Remark 3J.l. Let Ex = 1/2 for all x&€X. Then G'm =4 and the

only Bayes partitions are the crisp partitions.

Remark 3.2, Let A = §1/2% for all x&¢X. Then the m-principle

in the Bayesian decision meking is exactly the same as the
F-principle and both lead to the same results as the W-prin-
ciple,
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