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Abstract

This paper is the summary of "Product Fuzzy Measure Space
and Fubini's Theorems of Abstract Integrals on Fuzzy Sets",
the abstract integrals on fuzzy sets are further discussed
on the basis of the results proposed in(3,4,5,6), The Car-
tesian product for fuzzy sets and the product fuzzy c-algebra
are introduced., The concept of the sections for fuzzy sets
is given and some properties of the sections are studied. On
the product fuzzy measurable space, the product fuzzy measure
is defined and the Fubini's theorems of the abstract inte-
grals on fuzzy sets are proved.
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§1 Abstract Integrals on Fuzzy Sets

Throughout this paper, let X and Y be two nonempty sets,
F(X)={A; At X—(0,1)} Dbe the class of all fuzzy subsets of
X, analogously, %(Y) (resp. %(X*Y) ) be the class of all
fuzzy subsets of Y (resp. X*Y ), and we make the convention:
Q.00 O,

The following definitions and conclusions are introduced
from(3,4,5,6,7J.

D@fiﬁition1.1 The nonempty subset § of %X) is called a
fuzzy o~-algebra, if the following conditions are satisfied:
(e, X€%F;3
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(2) If A€%, then 4° €3 ;
[o0)
(3) If (A <%, then UA €3 .

Denote M ={f; fiX— (-0, ), {x;£(x)>e} €% ,aek0 )}, i,e,
M is the set of all measurable functions on E',,M+= {f; feM, 30},
B={E; E is the classical set in 3} . Evidently, B is a
classical o-algebra such that 8 <%, and all functions in M
are measurable on B .

Definition1.2 Let u: <% —(0,) be a fuzzy measure on =

—~

(cf.(4,7)), it is called o-additive, if we have
oo (e}
B(ng’]%)r'ni‘lg(ﬁh) whenever (A ) c:% » AN ,A,J.=¢ , 1%3.

In this paper, we shall always assume that u is a c-addi-
tive fuzzy measure.

n
Definition1.5 (1) Let £= 3 a;E € N be a simple function

(cf.(3,4)), A €%. The abstract integral of f on A with
respect to u is defined by

A 8 .
[ ® B epane)s
(2) If £ E,Mf is an arbitrary measurable function, A e%,then
the abstract integral of f on A with respect to u is defined
by f quu_ésup{ [ 45du; 0<s<f, s is the simple function);
(3) 1f f€M, A€, and if [ f'du<eo or [,f du<e , then

we say the abstract integral of f on A with respect to u is
existent, and the abstract integral of f on A with respect
to u is defined by sAde éjAf"Ldfg —[Af'dy’, where f¥=max(f,o),

~ Y i~

f =max(~f,0). If HAfd,gl<oo ,then we say f is integrable on A.

Such a abstract integral on fuzzy set holds all elementary
properties of the classical integral given in (1,2), and we
obtained some convergence theorems and transformation theorems
for the abstract integrals on fuzzy sets. (cf,(3,4,5,6))

§2 Product Fuzzy Measurable Space

In the section, we shall prove the unique existence
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theorem of the fuzzy o -algebra generated by a class of fuzzy
sets, and we shall introduce the Cartesian product for fuzzy
sets and the product fuzzy ¢ -algebra,

Theorem?2,1 If $# is any subclass of F(X), then there
exists a unique fuzzy c-algebra o(#4) such that
(1) 5 So(4);

(2) 1If 74 is any other fuzzy c-algebra containing 4 , then
o(A)=%F .

The fuzzy c-algebra o(s#4), the smallest fuzzy ¢-algebra
containing #4, is called the fuzzy ¢-algebra generated by # .
Now we give the concept of the Cartesian product of two

fuzzy sets,

Definition2,2 Let A € %(X), B € %(Y), the Cartesian
product of A and B is defined by

(4*B) (x,y)2(supp A)(x)AB(y) for any (x,y) EXxY,
Obviously, AxB is the fuzzy set in F(XxY),

Remark: When A and B are the classical sets, AxB defined
in Definition2,.,2 coincides with the Cartesian product for
the classical sets given in(1,2). (cf.(1,2))

We shall assume that % is a fuzzy o-algebra on X, ,‘E}j is a
fuzzy eo-algebra on Y .

Definition2,3 Let <e={AxB; A €%, BEW ) (the elements in
¢ are called the measurable rectangles), the fuzzy c-algebra
o(<e ) generated by <« (i.e. the smallest fuzzy c-algebra
containing <) is called the product fuzzy oc-algebra of E
and Y, and denote it by %x‘i{ y, the measurable space
(XxY, zxﬂ) is called the product fuzzy measurable space of

(X,2) and (Y,%).

§ 3 Sections of Fuzzy Sets and Sections of Functions

In the section, we shall introduce the sections of fuzzy
sets and the sections of functions, some properties of the
sections will be studied,

Definition3,1 Let D €$(XxY). For any given x €X, the fuzzy

set D.: Qx(y)ép,(x,}’) for any y €Y, is called the section
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of D at x, For any given y €Y, the fuzzy set D sz(x)AD(x,y)

yioy R
for any x €X, is called the section of D at y.
Obviously, D, e3(Y), ,gye’f}(x).

Remark: When D is the classical set, the D  and ’D’Y defined

in Definition3.1 coincide with the sections for the classical
sets given in 1,2). (cf. (1,2))
Theorem3.,2 The sections of fuzzy sets possess the follow-
ing elementary properties:
(1) Let D', D®€(XxY), x €X, y €Y, then
1 2 1 2 1 2
RnD = =D nly=¢ , DnD=¢ ;
1 2 nl 2 1 2 .
Db — ’D'xCD‘x ’ gycgy H
(2) Let DEX(XxY), x€X, y€Y, then

(B),=R)%  (B) =R
(3) Let {D™ <3(XxY), x€X, y €Y, then
(U2 0Dy, (U= UD,
(mQ’l‘Qm)X= mg‘r’g?; (m212m )S"m mQ1’D'$ .
Theorem3,3 Let A€3(X), B €3(Y), then

B if x€supp A
(Ax,@)f‘{ , and
$ if x&supp A

(,I},XE)Y is the fuzzy set such that

a 1if x e€supp A
(,A",B)Y(X)={ for any x €X,
o if x&supp A

where a=B(y) is a constant such that 0 <a<1,
Theorem3.4 Suppose that % is the fuzzy o-algebra contain-
ing all fuzzy sets of the form E3

a 1if x esupp A
g(x)a{ for any x €X,
o if x §supp A
where A is any fuzzy set in @ y @ 1s any constant such that

o<a<l. If D€Fx¥ , then
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(1) Qxeie for every x €X;

(2) gy €4 for every y €Y.

Proposition3.5 Let ¢ be a fuzzy c-algebra on X, then the
following statements are equivalent:

(1) % contains all fuzzy sets of the form E:

a if x esupp A
’E(X)r.{!) for any x €X,
if x &supp A

where A is any fuzzy set in %, a is any constant such that
o €a <1, :
(2) Whenever A €%, a €(0,1), then supp A €%, a€%,
where a is the flrzzy set: a(x)ysa for any x €X.
We turn now to the study of the sections of functions.
Definition3,6 Let g: XxY—(-o,) be a function on XxY,
For any given x €X, the function g, gx(y)é g(x,y) for any

y €Y, is called the section of g at x, For any given y €Y,
the function g_: gy(x)é g(x,y) for any x €X, is called the

y
section of g at vy.

We have the following theorem for the sections. ef func-
tions.

Theorem3.7 Let 4 be the fuzzy o-algebra given in Theorem
3.4, g be a measurable function on % x3t, then
(1) g4 1s a measurable function en ?Efor every given x €X;

(2) &, is a measurable function on 3 for every given y €Y,

§4 Product Fuzzy Measure

Throughout this section, we shall assume that # is a fuzzy
o-algebra on Y, y is a totally finite (i.e. 2(Y)<%® ) and
c-additive fuzzy measure on 3, % is the fuzzy c-algebra
such that

(1) 3 satisfies the condition (1) given in Proposition3,5;

(2) £(x)=2(B,) €M for every De%xH.
And suppose that u is a totally finite (i.e. E(X)<°° ) and
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c-addltlve fuzzy measure on %
9 ={BE; E is the classical set in ’,;) ,
Sa(F' F is the classical set in ¥},
Evidently, all measurable functions on 3 are measurable on
R » all measurable functions on%f are measurable on £, and
all measurable functions on Bx§ are measurable on %xﬁi .
By using the results given in(4,5,6), we can prove the
following theorem,
Theorem4,1 Let A e%, if we define

g(ﬂ)é L;L(Qx)d,g for every De%«¥,
then )‘A is a totally finite and o-additive fuzzy measure on

Y.

Definition4,.2 The 3% given in Theorem4.1 is called the

St

product fuzzy measure of u and y with respect to A, denote
it by (gx,_g)A o (XxY, Zxfl ,(’Ex’g)’é) is called the product fuzzy

measure space of (X,% ,n) and (Y,'H;!, ») with respect to A.
In the following, we shall always assume that u¥*, »¥* and
¥ denote such clagsical measures respectively:
for any given Ae@-, Be’&{,
u*(E) 2 u(A NE) for any E€R,
#(F)& y(B NF) for any F €9,
#(D)E(x2) , ((AXB)ND) for any DEBxS.
We have the following theorem for the classical measures
u*, % and ¥,
Theotremi,3 W= 1¥x %,
where (x%x v*)(D)=IXv*(DX) du* for every De®x$ isg the product

measure of u¥ and * defined in(1,2), (cf.(1,2})
§ 5 Fubini's Theorems of

Abstract Integrals on Fuzzy Sets

In the section, we shall prove the Fubini's theorems of
abstract integrals on fuzzy sets,
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All signs used in this section coincide with those given
in Section 4.

Theorem5.1 Let g(x,y) be a nonnegative measurable function
on BxH, Ae%, BeH, and

ep(y)=§Ag(x,y)dgéjAgy(X)d,g <=,

W x) =§§g(X.y)d,:’-;[§gx(y)dz<°° ’
then ¢(y) is a nonnegative measurable function on #, ¥(x)
is a nonnegative measurable function 'on % .
@,2) gave the following result. (cf. (1,2))
Theorem5,2 (Fubini's Theorem) Let g(x,y) be a nonnegative
measurable function on ﬁxs,jxg(x,y)du*<qo,ng(x,y)dv*<oo )

then jxxyg(x,y)d(u*x )=y fyatx, v amiaue= [, cfre(x, y) amr an,

We have the similar conclusions for the abstract integrals
on fuzzy sets.

Theorem5,3 (Fubini's Theorem) Let g(x,y) be a nonnegative
measurable function on Bx9, A €%, BeH, and

jAg(X’y)dE<w ) IBg(X,Y)d,Z,<°° , then

S’éx’ag(xv Y) d(ﬂ*l)é"ié[s‘@g(xv Y) d,zj@&:j,@[jég(x’ Y) du~]d,‘!, o

Theorem5.4 (Fubini's Theorem ) Let g(x,y) be an arbitrary
measurable function on 8xO, A €%, B€H , and g(x,y) is
integrakle on A, B and AxB, then

j’éxgg(x.y)d(,gu)’é j’é tjgg(x.y) dlld}vlﬂ”g[j‘ég(x,y)d’g]dz ]
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