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In the past few years, the problem of the upgrade of some mathematical
structure, from their universes to their power sets, has been paid atten-
tion to by more and more people, such as ordered, topological and measur-
able structure, etc. It is also rather interesting how to consider the up-
grade of algebraic structure. In the paper [1], we first studied the up-
grade of group, where the concept of HX group has already been advanced.
This paper will explore the upgrade of ring, where the concept of HX ring
is put forward and some important results are obtained.

1. THE DEFINITION OF HX RING AND A STRUCTURAL THEOREM

We always assume that (R,+,-) is a ring in the paper.
In PO(R)=2R-{G} we define two algebraic operations:
A+B2{atb| aeA, beB} (1.1)
AB2{ab| aeA, beB} (1.2)
It is easy to know that P,(R) respectively forms a semigroup for the opera-
tion (1.7) and (1.2).

It is thing worthy of note that (1.1) and (1.2) does not satisfy the
distributive law:

A(B+C)=AB+AC, (B+C)=BA+CA (1.3)
But it satisfies the so-called "weak distributive law":
A(B+C)< AB+AC, (B+C)A<BA+CA (1.4)

Let,f?<:Po(R). ¥ is called a distributive class on R, if 7 #8 and for
any A,B,C €%f, (1.3) is satisfied. It is easy to see that there must be
such the distributive classes.

NOTE: A distributive class may not be closed for the operations (1.1)
and (1.2). ‘

Put ¥2 {“F|7is a distributive class on R}. Clearly (¥, <) is a
partially ordered set and ¥ must have maximas from Zorn Lemma.

DEFINITION 1.1. Let®R ed. If R forms a ring for the operations (1.1)



and (1.2), then 72 is called a HX ring on R, which its null element is de-
noted by Q. Especially, a HX ring R is said to be regular, if 0eQ, where
0 is just the null element in R.

We always assume R, is a HX ring on R. Write

R*=u{A| AeR) (1.4)

LEMMA 1.1. 1) (Q,+) is a subsemigroup of R;

2) QRTUR"Q<q;

3) OeR* implies 0eQ.

Proof. 1) Only to note that 2Q=Q.

2) 1f xeQR"UR™Q, then xe QR™ or R'Q. Assuming xeQR™, there exist aeQ
and beR*, such that x=ab. For beR*, there exists AeR, such that beA, from
(1.4), so x= abeQA Q.

3) OeR" implies (JAeR){(0eA) 1mphes OeOQCR QCQ Q.E.D.

COROLLARY R is regular iff 0eR™.

LEMMA 1.2. 1) (vAeR)(|A|=]Q]);

2)  (VYA,BeR)(AMB#® implies |ANB|=]Q]).

Proof. 1) A+Q=A implies (¥aeA)(a+QcA+Q=A) implies |Q|=|a+Q|=|A|;

(-A)+A=Q implies (¥be-A)(b+A<(-A)+A=Q) implies |A|=|b+A|=<|Q].

2) |AMB|=<|A|=Q; xeAnB implies x+Q< ANB implies |Q|=|x+Q|=|ANB|.

Q.E.D.

Let IePO(R) and H be a subring of R. I is called a semiideal with res-
pect to H, if they satisfy the following conditions:

1) 1 is a subsemigroup of (R,+);

2) THUHI<I.

It is easy to learn Oel from the condition 2).

Let AeP (R), we know that 2A=A [A2=A] => A is a subsemigroup of (R,+)
[(R,-)]; conversely, it is not true. But if OeA [eeA, when there exists
the unit element e ofR], then that A is a subsemigroup of (R,+)[(R,-)] iff
28=A [AZ=A].

From these we have that 2I=1. ‘
LEMMA 1.3. Let I be a semiideal with respect to a subring H of R. If

12=I, then for any a,beH, we have
(a+1)(b+I)=ab+I (1.5)
Proof. (a+I)(b+I)=ab+aI+Ib+12=ab+(aI+Ib+I). We only need to prove
al+Ib+I=1 (1.6)

In fact, on the one hand, alUlb<I implies al+Ib+I<I; on the other
hand, al+Ib+I Dfa0+0b+c | cel}=I. .
Thus (1.6) is true, and so (1.5) be, too. Q.E.D.



LEMMA 1.4.  Under the conditions of Lemma 1.3, we have

1) (1.5) has nothing to do with choosing the representative ele- -
ments;

2)  If we put"gié{aﬂl aeH} , the’fe ¥, i.e. 9 is a distributive
class on R.

The proof is straightforward.

THEOREM 1.1. Let H be a subring of R, and Q semiideal with respect to
H. 1f Q%=Q, then

R 2{a+q| aeH’} (1.7)
is a regular HX ring on R, and Q just the null element of R .

Proof. Noting 2Q=Q, clearly the operation (1.1) is closed in R . The
operation (1.2) is also closed in from Lemma 1.3. R is a distributive. -~ :
class from Lemma 1.4. Moreover, since R is a ring it is easy to see that
the operations satisfy the associative law.

Making the mapping f:H— R, at— a+Q, we have

f(at+b)=(a+b)+Q=(a+b)+(Q+Q)=(a+Q)+(b+Q)=f(a)+f(b),
f(ab)=ab+Q=(a+b) (b+Q)=f(a)f(b)
Thus f is surjective homomorphism: H~R . So R is a ring, i,e, R is a HX
ring on R. Noting OeQ, R, is a regular HX ring.

Moreover, from f(0)=0+Q=Q, Q is the null element of R . Q.E.D.

REMARK: Since H~R , H/kerf ¥R . This means that R making in this way
must isomorphic with the residue class ring of some subring of R. Besides,
Theorem 1.1 has the following

COROLLARY 1.  kerfcQ | (1.8)

Proof. xekerf implies x+Q=Q implies x=x+0eQ. Q.E.D.

Now we consider how to change (1.8) into equality. Let R.be a regular HX
ring. For any AeR, write

Ké{aeA|-ae-A’} (1.9)
that is said to be the kernel of A. Clearly, (VA,Be R)(A<B implies A<B).
COROLLARY 2. kerf=kerf (1.70)

Proof. Noting that x+Q=Q implies nx+Q=Q, for any natural number n. So
xekerf iff x+Q=Q iff 0+x+Q=Q iff (-x)+2x+Q=Q iff (-x)+Q=Q iff xekerf.
Q.E.D.
COROLLARY 3.  kerf=Q (1.1)
Proof. On the one hand, kerf=kerfc Q. On the other hand, for any xeQ,
we prove that x+Q=Q. That x+Q<Q is clear; conversely, for any yeQ, y=y+O=y+
x+(-x)=x+[y+(-x)]. Since xeQ, so y+(-x)eQ, thus yex+Q, i.e. x+Q=Q. Hence Q<

kerf. Q.E.D.



COROLLARY 4. kerf=Q iff Q=Q
2. QUST RESIDUE CLASS RING

Theorem 1.1 means that we can form a regular HX ring R by using a sub-
ring H of R and semiideal with respect to H and R presents the form of coset
so that Q just is the null element of R . As the inversion of Theorem 1.1,
we have the following

PROBLEM: Let R be a regular HX ring on R. Whether are there a subring H
and a semiideal I with respect to H such that7l.={é+1| aeH’}and Q=I?

If R is regular, write

R-W7 | AeR ] (2.1)
Clearly (YAeR)(A#@), so R#8.

THEOREM 2.1. If R is a regular HX ring on R, then

1) R is a subring of R;

2) Q is a semiideal with respect to R;

3) R ={a+Q | aeﬁ'} .

Proof. 1) Va,beR, JA,BeR, such that aeA, beB. First prove
that a-beR. Since a-b=a+(-b)eA+(-B)=Ce? and noting -[a+(-b)]=b+(-a)eB+(-A)
=-C, so a-beC<R. Now we prove that abeR. For this we should prove a fact:
for any A,BeR , must have the following

ABCAB (2.2)
xeR B implies (3 aeA)(JbeB)(x=ab) implies -x=-(ab)=(-a)be(-A)B=-(AB)
implies xeAB, so (2.2) is true.

By the (2.2) we have abeAB CAB<R.

In a ward, R is a ring.

2)  Noting QﬁUﬁQc:QR*UR*Q, Q is the semiideal with respect to R from
Theorem 1.1.

3)  For any AeR, taking aeA, we may prove that a+Q=A. On the one hand,
a+QC A+Q=A. On the other hand, beA implies b=0+b=(a-a)+b=a+(b-a)=a+(A-A)=a+
Q, so Aca+Q. Thus A=a+Q. Therefore R<{a+Q| aeﬁ'}.

Conversely, for any aeR, there exists AeR, such that aeR. So A=a+Q
from above the process of the proof, i.e.,{a+Q| aeR J<R.

In a ward, R={a+Q| aeﬁ}. Q.E.D.

Theorem 1.1 has answered the problem above in the affirmative.

DEFINITION 2.1. Let Q be a semiideal with respect to R. The regular
HX ring making as follows

R|Q={a+q| aeR’} (2.3)



is called qusi residue class ring which R is with respect to Q.

According as Definition 2.1, if R, is a regular HX ring on R, then R must

be the qusi residue class ring which R is with respect to some subring of R:
R =R|Q T (2.4)

Theorem 2.1 has also the following

COROLLARY  (¥YAe ) (aeA implies a+Q=A)

Under stronger conditions Theorem 1.1 is the following form:

THEOREM 2.2. Let R be a HX ring on R. If Q is a ideal of R, then

1) R={a+Q| aeR*} :

2) R is a subring of Rj

3) R=R/Q.

Proof. 1) V¥AeR, taking aeA, then a+Q<A+Q=Q. It can be proved that
a+Q=A. If it is not true, then there exists beA-(a+Q). We can prove that b-a
¢Q. In fact, if b-a=ceQ, then b=a+cea+Q. This is in contradication with be
a+Q. Taking de-A, we have a+d,at+beA+(-A)=Q. So b-a=b+d-d-a=(b+d)+[-(a+d)]eQ.
This is in contradication with b-aéQ. Thus a+Q=A, i.e.?{c-{a+Q| aeR*'}.

Conversely, for any aeR*, there exists AeR , such that aeA. So a+Q=Ae?R .
Thus { a+Q| aeR*}CR.

In a ward, R =1 a+Q| aeR*} .

2) VaeR*, there is AeR, such that aeA. Noting 0eQ and A+(-A)=Q, we
know that, there are beA,-be-A, such that b-b=0. From A=b+Q, there is ceQ,
such that a=b+c. So -a=-(b+c)=(—c)+(-b)eQ+(-A)=-A<:R*. Thus (R*,+) is a
subgroup of R.

Moreover, Va,beR*,fﬂ A,BeR, such that aeA,beB. So abeAB;:R*. Thus
(R*,-) is a subsemigroup of R.

In a ward, R* is a subring of R.

3) Clearly Q is a ideal of R*. So R =R’ /Q. Q.E.D.

3. THE RELATION BETWEEN QUSI RESIDUE CLASS RING AND RESIDUE CLASS RING

LEMMA 3.1. If R is regular, then Q is the ideal of R.

Proof. Making the mapping f:R— R , a ——=a+Q, clearly f is a sur-
jective homomorphism. From the corillary 3 in the section 3, kerf=Q. So Q
is an ideal of R. Q.E.D.

THEOREM 3.1. If R is a regular HX ring on R, then
R/Q T R|Q (3.1)
Proof. From the surjective homomorphism f:R —= R|Q, a = a+Q, wq_hAve



R/kerf ¥ R|Q. And by the corollary in the section, (3.1) is true. Q.E.D.

Let R a regular HX ring, Write

R=R | AeRY (3.2)

LEMMA 3.2.  (¥Re = )(¥aeR)( a+Q=a+Q) |

Proof. xe a+Q implies (J beQ)(x=atb) implies -b=(-x)+ae[-(a+Q)]+A=
(-A)+A=Q implies beQ implies x=a+bea+Q;

xea+Q implies (4 beQ)(x=a+b) implies -x=(-a)+(-b)e-(a+Q) implies xe
a+q.

In a ward, a+Q=a+Q. Q.E.D.

THEOREM 3.2. If R is a regular HX ring, then

R =R/ (3.3)

Proof. ¥ Ae R , taking aeA, a+Q=A from the corollary of Theorem 2.1.
Thus A=a+Q. Noting Lemma 3.2, we have A=a+Q e R/Q. So R <RA.

Conversely, ¥ a+Q e R/Q, since aeR,then J Ae R, such that aeA. From
the process of above proof, we learn that a+Q=a+Q=ARe R . So R/QC R .

In a ward, R =R/Q. Q.E.D.
COROLLARY  If R is regular, then
(YA,Be R) (A B =AB) (3.4)

Proof. From (2.2) AB<AB. And from (3.3) we have AB=AB. Q.E.D.
THEOREM 3.3. Let f be a surjective homomorphism from R to another
ring R'. We have
1) If A is a HX ring on R, then
R t¥(A) | AeR Y (3.5)
is a HX ring on R', and RV R ;
2) If R'is a HX.ring on R', then
R e A Ae R Y (3.6)
is a HX ring on R, and R~ R .
The proof is straightforward.
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