### FUZZY PAN-INTEGRAL

## Li Xiaoqi

# Zhangjiakou, Habei, Chima

## ABSTRACT

In this paper, the fuzzy pam-integral is imtroduced, and several elementary properties of the fuzzy pam-integrals are discussed. Furthermore, a transformation theorem of the fuzzy pam-integrals is proved, and it is also pointed out that the pam-integral and the fuzzy integral on a fuzzy set and the (N) fuzzy integral studied in [1,3,4] are all the special forms of the fuzzy pam-integrals. Finally, some convergence theorems of a sequence of the fuzzy pam-integrals are shown.

Keywords: Fuzzy measure, Fuzzy pan-space, Fuzzy pan-integral gral.

# § 1 BASIC CONCEPTS

The concepts given in this section (from Definition 1.1 to Definition 1.5) of this paper are introduced from [1,2]. Throughout this paper, let  $R_{+=}[0,\infty)$ ,  $\overline{R}_{+=}[0,\infty]$ .

Definition 1.1 Let  $\oplus$  be a two-place operation defined on  $\overline{\mathbb{R}}_{+,,(\overline{\mathbb{R}}_{+,+},\oplus)}$  is called an ordered commutative semi-group with respect to  $\oplus$ , if the following conditions are satisfied:

- (1) a ⊕ b=b ⊕ a;
- (2) (a \(\phi\) b) \(\phi\) c=a \(\phi\) (b \(\phi\) c);
- (3)  $a_1 \leq b_1$ ,  $a_2 \leq b_2 \rightarrow a_1 \oplus a_2 \leq b_1 \oplus b_2$ ;

- $(4) a \oplus 0=a;$
- Where a, b, c, ai,  $b_i \in \overline{R}_+$ , (i=1,2), "0" is the number zero.
- (5) If  $\{a_m\}\subset R_+$ ,  $\{b_m\}\subset R_+$ , and  $\lim_{n\to\infty} a_n$  and  $\lim_{n\to\infty} b_m$  are existent, then  $\lim_{n\to\infty} (a_n \oplus b_m) = \lim_{n\to\infty} a_n \oplus \lim_{n\to\infty} b_n$ ;

Hereafter, we denote  $S_{m=a_1} \oplus a_2 \oplus \cdots \oplus a_n = 1$ .

Definition 1.2 Let O be another two-place operations.

Definition 1.2 Let  $\odot$  be another two-place operation defined on  $(\overline{R}_+, \bigoplus)$ ,  $(\overline{R}_+, \bigoplus)$ ,  $(\overline{R}_+, \bigoplus)$  is said to be an ordered commutative semi-ring with respect to " $\bigoplus$ " and " $\bigcirc$ ", if and only if

- (6) a⊙b=b⊙a;
- (7)  $(a \odot b) \odot c = a \odot (b \odot c);$
- (8)  $(a \oplus b) \odot c = (a \odot c) \oplus (b \odot c)$ ;
- (9)  $a_1 \leq b_1$ ,  $a_2 \leq b_2 \longrightarrow a_1 \otimes a_2 \leq b_1 \otimes b_2$ ;
- (10) a **0** 0=0:
- (11)  $a \neq 0$ ,  $b \neq 0 \longrightarrow a \odot b \neq 0$ ;
- (12) There exists a unit element  $I \in \mathbb{R}_{+}$ , such that  $a \odot I = I \odot a = a$ :

Where a,b,c,ai,bi $\in \mathbb{R}_+$  (i=1,2);"0" is the number zero.

- (13) Whenever  $\{a_n\}\subset \overline{\mathbb{R}}_+$ ,  $\{b_n\}\subset \overline{\mathbb{R}}_+$ ,  $\lim_{n\to\infty}$  an and  $\lim_{n\to\infty}$   $b_n$  are existent and finite, then  $\lim_{n\to\infty}(a_n\odot b_n)=\lim_{n\to\infty}a_n\odot\lim_{n\to\infty}b_n$ . Furthermore, if  $a\in \mathbb{R}_+$ , and if  $\lim_{n\to\infty}b_n$  is existent, then  $\lim_{n\to\infty}(a\odot b_n)=a\odot\lim_{n\to\infty}b_n$ .
- Example 1.  $(\overline{R}_+,V,\Lambda)$  is an ordered commutative semi-ring, where V and  $\Lambda$  are maximum and minimum operations respective—ily. I= $\infty$  is the unit element of  $(\overline{R}_+,V,\Lambda)$ .

Example 2.  $(R+,V,\cdot)$  is and ordered commutative semi-ring, where "." is common multiplication. I=1 is the unit element.

Definition 1.3 Let  $\mathcal{F}(X) = \{A: A: X \rightarrow [0,1]\}$  be the set of all fuzzy subsets of X. The subset  $\mathcal{F}$  of  $\mathcal{F}(X)$  is called a fuzzy  $\sigma$ -algebra, if the following holds:

- (1) ø, X ∈ F;
- (2) If AeF, then AceF;
- (3) If  $\{A_n\} \subset \mathcal{F}$ , then  $U A_n \in \mathcal{F}$ .

Definition 1.4 A fuzzy measure is an extended real-valued set function  $\mu: \mathcal{F} \to [0, \infty]$  with the properties:

- (1)  $\mu(\emptyset) = 0$ ;
- (2) For any  $A, B \in \mathcal{F}$ , if  $A \subset B$ , then  $\mu(A) \leq \mu(B)$ ;
- (3) (Constinuity from below) Whenever  $\{A_n\} \subset \mathcal{I}$ ,  $A_n \subset A_{n+1}$ ,  $n=1,2,\cdots$ , then  $\mu(UA_n) = \lim_{n \to \infty} \mu(A_n)$ ;
- (4) (Continuity from above) Whenever  $\{A_n\} \subset \mathcal{F}$ ,  $A_n \supset A_{n+1}$ ,  $n=1,2,\cdots$ , and there exists  $n_0$  such that  $\mu(A_{n_0}) < \infty$ , then  $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$ .

Definition 1.5 If  $\mathcal{F}$  is a fuzzy 6-algebra, and if  $\mu$  is a fuzzy measure on  $\mathcal{F}$ , then we call  $(X,\mathcal{F})$  a fuzzy measurable space and  $(X,\mathcal{F},\mu)$  a fuzzy measure space.

Definition 1.6 Let  $(X, \mathcal{F}, \underline{\mu})$  be a fuzzy measure space and  $(\overline{R}_+, \oplus, \odot)$  be an ordered commutative semi-ring, we call  $(X, \mathcal{F}, \underline{\mu}, \overline{R}_+, \oplus, \odot)$  a fuzzy pan-space.

§ 2 DEFINITION AND PROPERTIES OF FUZZY PAN-INTEGRAL

In this section, we will give the defimition of the fuzzy

pan-integral and its elementary properties .

Definition 2.1 Let  $(X, \mathcal{F})$  be a fuzzy measurable space,  $(\overline{\mathbb{R}}_+, \oplus, \odot)$  be an ordered commutative semi-ring,

 $\mathcal{B}=\{E;\ E\in\mathcal{F},\ E \ is\ a\ classical\ set\}\ (It\ is\ clear\ that\ \mathcal{B}$  is a classical 6-algebra contained in  $\mathcal{F}$ ). Then

(1) If I is the unit element of  $(\overline{R}_+, \bigoplus_{r}, \odot)$ , the extended real-valued function on X :

$$\chi_{E}(\mathbf{x}) = \begin{cases} I & \text{if } \mathbf{x} \in E \\ 0 & \text{if } \mathbf{x} \in E \end{cases}$$

is called the characteristic function of E, where E & 3;

(2) The real-valued function s(x)

$$\mathbf{s}(\mathbf{x}) = \bigoplus_{i=1}^{n} (\alpha_{i} \odot \chi_{\mathbf{E}}(\mathbf{x}))$$

is said to be a simple function on X, if  $0 \le \alpha_i < \infty$ ,  $E_1 \in \mathcal{F}$ ,  $i=1,2,\cdots n$ , and if  $\alpha_i = \alpha_j$ ,  $E_1 \cap E_j = \emptyset$ , i+j;  $\bigcup_{i=1}^n E_i = X$ .

We denote the set of all simple functions on X by S .

It is easy to prove that a simple function given in Definition 2.1 has unique representation.

Definition 2.2 A mapping  $f: X \to (-\infty, \infty)$  is called a measurable function on  $\mathcal{F}$ , if for any  $\alpha \in [-\infty, \infty]$ , we have  $F_{\alpha} = \{x: f(x) \ge \alpha\} \in \mathcal{F}.$ 

Denote the set of all measurable functions on  $\mathcal{G}$  by M, and write  $M^+=\{f\colon f\in M$ ,  $f\geqslant 0\}$ .

Definition 2.3 Let  $(X, \mathcal{T}, \mu, \overline{R}_+, \oplus, \odot)$  be a fuzzy panspace,  $A \in \mathcal{F}_+$  For any  $s(x) = \bigoplus_{i=1}^{n} (\alpha_i \odot \chi_{E_i}(x)) \in S$ , we write  $P_A(s) = \bigoplus_{i=1}^{n} (\alpha_i \odot \mu(A/E_1)),$ 

when  $f \in \mathbb{M}^+$ , the fuzzy pan-integral of f on A with respect to

μ is defined by

$$(p) \int_{\widetilde{A}} f d\mu \stackrel{\triangle}{=} \sup_{s \in s(f)} P_{\widetilde{A}}(s)$$

where  $s(f) = \{s: s \in S, 0 \le s \le f\}$ .

The fuzzy pan-integrals hold the following properties. Proposition 2.1 Let  $f,g\in M^+,A,B\in \mathcal{F}$ , then

- (1) If  $f \le g$ , then  $(p) \int_{A} f dy \le (p) \int_{A} g dy$  for any  $A \in \mathcal{F}$ ;
- (2)  $(p)\int_{\underline{A}}(f \wedge g) d\mu \leq (p)\int_{\underline{A}} f d\mu \wedge (p)\int_{\underline{A}} g d\mu$ ;
- (3)  $(p)\int_{A}(fVg)d\mu \geq (p)\int_{A}fd\mu \vee (p)\int_{A}gd\mu$ ;
- (4) If ACB, then (p)  $Afdu \leq (p) Bfdu$ ;
- (5) (p)  $\int_{A\cap B} \operatorname{Id}_{\mu} \leq (p) \int_{A} \operatorname{Id}_{\mu} \wedge (p) \int_{B} \operatorname{Id}_{\mu};$
- (6)  $(p) \int_{AUB} f d\mu \ge (p) \int_{A} f d\mu \lor (p) \int_{B} f d\mu$ ; (7) If  $\mu(A) = 0$ , then  $(p) \int_{A} f d\mu = 0$  for any  $f \in M^{+}$ ;
- (8)  $(p)\int_{A} Cd\mu \ge Co\mu(A)$ ,  $C \in \mathbb{R}_{+}$ . Proof. (1) If  $f \leq g$ , then  $s(f) \subset s(g)$ , thus
- $(p) \int_{\underline{A}} f d\mu = \sup_{s \in s(f)} P_{\underline{A}}(s) \leq \sup_{s \in s(g)} P_{\underline{A}}(s) = (p) \int_{\underline{A}} g d\mu.$
- (2) Since  $fAg \leq f$ ,  $fAg \leq g$ , by (1), we have
- $(p)\int_{A}(f \wedge g) d\mu \leq (p)\int_{A}f d\mu$  and  $(p)\int_{A}(f \wedge g) d\mu \leq (p)\int_{A}g d\mu$ , therefore,  $(p)\int_{\underline{A}} (f \wedge g) d\underline{u} \leq (p) \int_{\underline{A}} f d\underline{u} \wedge (p) \int_{\underline{A}} g d\underline{u}$ .
- (3) By using (1), it is easy to prove this conclusion.
- (4) If  $A \subset B$ , then  $P_A(s) \leq P_B(s)$  and therefore  $(p)\int_{A}fd\mu \leq (p)\int_{B}fd\mu$ .
- (5) It follows from (4) that (p) \( \int\_{\text{A}\text{\( B\)}}\) fdu and  $(p)\int_{A\cap B}fdu \leq (p)\int_{B}fdu$ , thus, we have
  - $(p)\int_{A\cap B} f d\mu \leq (p)\int_{A} f d\mu \wedge (p)\int_{B} f d\mu$ .

- (6) The proof of this conclusion is similar to (5) .
- (7) When  $\mu(A)=0$ , then  $P_{A}(s)=0$  for any  $s \in S$ , thus  $(p) \int_{A} f d\mu = 0$  for any  $f \in M^{+}$ .
- (8) Observe that  $s_0 = C \odot \chi_X \in s(f)$ , where f = C. So, we have  $(p) \int_{A} C d\mu \ge C \odot \mu(A)$ .

Proposition 2.2 If (p)  $\int_{A} f d\mu = 0$ , then  $\mu(A \cap F_0) = 0$ , where  $F_0 = \{x: f(x) > 0\}$ .

Proof. Suppose that  $\mu(A \cap F_{\overline{\bullet}}) = C > 0$ , since  $A \cap F_{\overline{\bullet}} \nearrow A \cap F_{\overline{\bullet}}$ , by the continuity from below of  $\mu$ , we have  $\mu(A \cap F_{\overline{\bullet}}) \to \mu(A \cap F_{\overline{\bullet}}) = C$ . thus there exists  $n_0$ , such that  $\mu(A \cap F_{\overline{\bullet}}) > \frac{C}{2C} > 0$ . Observe that  $s_0 = \frac{1}{n_0} \odot \chi_{F_{\overline{\bullet}}} \in s(f)$ , it follows that

 $(p) \int_{\mathbb{A}} f d\mu = \sup \bigoplus_{\mathbf{x} \in \mathbf{x}(\mathbf{f})^{i=1}} (\alpha_i \bigcirc \mu(\mathbb{A} \cap \mathbf{E_1})) \geqslant \frac{1}{n_o} \bigcirc \mu(\mathbb{A} \cap \mathbf{F_1}) > 0 .$ It is a contradiction.

## § 3 SOME PARTICULAR FORMS OF FUZZY PAN-INTEGRAL

Obviously, if A is a classical set, then the fuzzy panintegral on A is the pan-integral defined in [1]. Furthermore, we have the following results;:

Theorem 3.1 For any given  $A \in \mathcal{F}$ , if we define  $\mu^*(E) \triangleq \mu(A \cap E)$  for any  $E \in \mathcal{B}$ ,

then  $\mu^*$  is a fuzzy measure on  $\mathcal{B}$ .

Proof. In fact, we have

- (1)  $\mu^*(\emptyset) = \mu(A \cap \emptyset) = \mu(\emptyset) = 0$ ;
- (2) If  $E_1 \subset E_2$ ,  $E_1$ ,  $E_2 \in \mathcal{B}$ , then  $\mu^*(E_1) \leq \mu^*(E_2)$ ;
- (3) Constinuity from below: Let  $\{E_{n}\}\subset\mathcal{G}$ ,  $E_{n}\subset E_{n+1}$ ,  $n=1,2,\cdots$ , then  $\mu^*(\tilde{U}E_{n})=\mu(A\cap(\tilde{U}E_{n}))=\mu(\tilde{U}(A\cap E_{n}))=\lim_{n\to\infty}\mu(A\cap E_{n})=\lim_{n\to\infty}\mu^*(E_{n})$ .
- (4) Constinuity from above : If  $\{E_m\}\subset\mathcal{B}$ ,  $E_m>E_{m+1}$ ,  $n=1,2,\cdots$ ,

and if there exists  $n_0$ , such that  $\mu^*(E_{n_0}) < \infty$ , then  $\mu^*(\bigcap_{n=1}^{\infty} E_n) = \mu(\bigcap_{n=1}^{\infty} (\bigcap_{n=1}^{\infty} E_n)) = \mu(\bigcap_{n=1}^{\infty} (\bigcap_{n=1}^{\infty} (A \cap E_n)) = \lim_{n \to \infty} \mu(A \cap E_n) = \lim_{n \to \infty} \mu^*(E_n).$  That is to say,  $\mu^*$  is a fuzzy measure on  $\mathcal{B}$ .

Theorem 3.2 (Transformation theorem) Suppose that  $(X, \mathcal{F}, \mu)$  is a fuzzy measure space,  $A \in \mathcal{F}$ ,  $f \in M^+$ , we have  $(p) \int_A f d\mu = (p) \int_X f d\mu^*$ .

Where  $(p) \int_X f d\mu^*$  is the pan-integral defined in [1] and  $\mu^*$  is the fuzzy measure defined in Theorem 3.1 .

Proof. (p)  $\int_{\mathbb{A}} \widehat{\operatorname{fdu}} = \sup \left( \bigoplus_{i \in I} (\alpha_i \odot \mu(\widehat{A} \cap E_1)) \right) = \sup \left( \bigoplus_{i \in I} (\alpha_i \odot \mu^*(E_1)) \right)$   $= \sup \left( \bigoplus_{i \in I} (\alpha_i \odot \mu^*(X \cap E_1)) \right) = (p) \int_{X} \widehat{\operatorname{fdu}}^*.$   $s \in s(f)^{i=1}$ 

The theorem is proved.

Using this transformation theorem, we can prove the following two particular forms of the fuzzy pan-integral .

Theorem 3.3 Let  $(X, \mathcal{F}, \mu, \overline{R}_+, \oplus, \odot)$  be a fuzzy pan-space,  $\underline{A} \in \mathcal{F}$ ,  $f \in M^+$ . If  $(\overline{R}_+, \oplus, \odot) = (\overline{R}_+, \vee, \Lambda)$ , then  $(p) \int_A f d\mu = \int_A f d\mu$ 

where  $\int_{A} f d\mu = \sup(\alpha \wedge \mu(A \cap F_{\alpha}))$  is the fuzzy integral defined in [3].

Proof. For any  $A \in \mathcal{G}$ ,  $f \in M^+$ , it follows from Theorem 4.2 in [1] and Theorem 2.2 in [3] and Theorem 3.2, that

 $(p) \int_{\underline{A}} f d\mu = (p) \int_{\underline{X}} f d\mu^* = (s) \int_{\underline{X}} f d\mu^* = \int_{\underline{A}} f d\mu$ 

where (s)  $\int_X f d\mu^*$  is the Sugemo fuzzy integral on X with respect to  $\mu^*$  .

Theorem 3.4 Let  $(X, \mathcal{F}, \mu, \overline{R}_+, \oplus, \odot)$  be a fuzzy pan-space,  $\underline{A} \in \mathcal{F}$ ,  $\underline{f} \in \underline{M}^+$ . If  $(\overline{R}_+, \oplus, \odot) = (\overline{R}_+, \vee, \bullet)$ , them

 $(p)\int_{A} f d\mu = (N)\int_{A} f d\mu$ 

where  $(\widetilde{N})\int_{A} f d\mu = \sup_{\alpha > 0} (\alpha \mu(A \cap F_{\alpha}))$  is the (N) fuzzy integral defined in [4].

Proof. Using Theorem 4.3 in [1] and Theorem 3.2, it is easy to prove this conclusion.

## § 4 CONVERGENCE THEOREMS

Theorem 4.1 Let  $(X, \mathcal{F}, \mu, \overline{R}_+, \oplus, \odot)$  be a fuzzy pan-space,  $\{f_{n}, f\} \subset M^+, f_n \leqslant f_{n+1}, m=1, 2, \cdots, \text{ and if } f_n \to f, \text{ then for any } A \in \mathcal{F}, \text{ we have } \lim_{n \to \infty} (p) \int_A f_n d\mu = (p) \int_A f d\mu .$ 

Proof. By using Theorem 3.1 in [1] and Theorem 3.2, for any  $A \in \mathcal{F}_{r}$ , we have

 $\lim_{n\to\infty}(\mathbf{p})\int_{\mathbf{A}}\mathbf{f}_{\mathbf{n}}\mathrm{d}\mathbf{u}=\lim_{n\to\infty}(\mathbf{p})\int_{\mathbf{X}}\mathbf{f}_{\mathbf{m}}\mathrm{d}\mathbf{u}^*=(\mathbf{p})\int_{\mathbf{X}}\mathbf{f}\mathrm{d}\mathbf{u}^*=(\mathbf{p})\int_{\mathbf{A}}\mathbf{f}\mathrm{d}\mathbf{u}$ As the corollary of Theorem 4.1, we have the following

Theorem 4.2 (Fatou's Lemma) Let  $(\mathbf{X},\mathcal{G},\mathbf{u},\overline{\mathbf{R}}_+,\mathbf{\Phi},\mathbf{\odot})$  be a fuzzy pan-space, if  $\{\mathbf{f}_{\mathbf{n}}\}\subset \mathbf{M}^+$ , then

$$(p)\int_{A} \frac{\lim_{n\to\infty} f_n dn}{\lim_{n\to\infty} \left( \frac{1}{n\to\infty} (p) \right)} \int_{A} f_n dn$$
.

\* With grateful thanks to Qiao Zhong, lecturer in Hebei Institute of Architecturl Engineering, for valuable help.

#### REFERENCES

- [1]. Yang Qingji, The pan-integral on the fuzzy measure space(in Chinese), Fuzzy Mathematics(Wuhan, China), 3(1985), 108-114.
- [2]. Qiao Zhomg, Riesz's theorem and Lebesgue's theorem on the fuzzy measure space, BUSEFAL, 29(1987), 33-41.

- [3]. Qiao Zhong, The fuzzy integral and the convergence theo rems, BUSEFAL, 31(1987), 73-83.
- [4]. Zhao Ruhuai, (N) Fuzzy Integral, J. of Mathematical Research and Exposition (in Chinese), 2(1981), 55-72.
- [5]. P.R. Halmos, Measure Theory, Von Nostrand, New York, 1967.