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ABSTRACT
In thiis paper, the fuzzy pam~integral is imtreduced, amd
several elementary properties of the fuzzy pan~integrals
are discussed., Furthermore, a transformatiom theorem of the
fuzzy pan-integrals is proved, and it is also pointed out
that the pan-integral and the fuzzy integral on a fuzzy set
and the (N) fuzzy integral studied in [1,3,4] are all the
special forms of the fuzzy pam-integrals. Finally, some con-
vergence theorems of a sequence of the fuzzy pan-integrals
are shown.
Keywords: Fuzzy measure, Fuzzy pan-space, Fuzzy pan-integ: .
gral.
§1 BASIC CONCEPTS

The concepts given in this section (from Definition 1.1
to Definition 1.5) of this paper are introduced from [1,2].

Throughout this paper, let R+=[0,00),R+= [0,00] .

Definition 1.1 Let () be a two-place operation defined

on §+,,(§+,,: @) is called an ordered commutative semi-group
with respect to @, if the following conditions are satisfied:
(1) a ® b=b @ a;
(2) (a@®P) Do=a®(b@c) ;
(3) a,sb, a,sbh—>a®a,sh@b, ;
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(4) a@Oaa 3
Where a,b,c,ai,bi¢ R4,(i=1,2), "O" is the number zero.

(5) If {&m}C§+,, {bﬁcﬁ-{‘, and lim ap gnd 1im by are exis-
’ n-» 00 n-»o0o0

tent, then lim(an ® b:m)--nl_ﬁ;g an @ lim bn§
Hereafter, we denote Smea, D a, @ ?.. @ a,=;&xa4 .

Definition 1.2 Let ® be another two-place operation de-

fined on (R+ ', @ )o(R+y ® , ©)is said to be an ordered com-
mutative semi-ring with respect to " ®" and "@",if and
only if
(6) a®b=bOaj;
(7) (a@Db)oc=a0(boc);
(8) (a@bloc=(avc) @ (bec);
(9) a,<b,, a,sb,—>a,08,<bOb;;
(10) a@EO0=0;
(11) a#0, bkO==»a ®bAO;
(12) There exists a unit element 1€R4+, such that
a®l=I0a=a;
Where a,b,c,ai,bi€R+ (i=1,2);"0" is the number zero.
(13) Whenever {ay}cR+, {bmj<R+, lim an and lim by are exi-
stent and finite, then. r}_;}g(ano‘bn)ﬂ_&g an© lim bn, Further-
more, if a€R4, and if ggba is existent, then
’:'L_J;.B(a@bn)aaegg bn.

Example 1. (§+,V,/\) is an ordered commutative semi-ring,

Where V and A are maximum and minimum operations respective-

"Iy, I=00 is the unit element of (R+,V,A).
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Example 2. (R+,V,+) is and ordered commutative semi-ring,

where "." is common multiplication.I=1 is the unit element.

Definition 1.3 Let % (X)={A: A: X=>[0,1]} be the set of

all fuzzy subsets of X, The subset q’:‘of gp(x) is called a
fuzzy o-algebra, if the following holds:

(1) gS,Xe%';
(2) If 5627, then é@eg;
(3) If {ﬁn}cﬁ ’ thenzéneff .

Definition 1.4 A fuzzy measure is an extended real-valued

set function u: g —»[0,02] with the properties;

(1) n(#)=0 ;

(2) For any ,é'?ﬁz' if AcB, thema(é_) 52(,}?’.) 3

(3) (Cemtinuity from below) Whemever { ﬁn}c %+ MmChny

(- -
n=1,2,-++, then )ﬁ(,‘é!ﬁ')“.}.}.‘f palam) 5
(4) (Continuity from abowve) Whenever { ﬁu}c % » > M0y,
n=1,2,-++, and there exists n, such that }j(,{\,ﬂo)< oq , then
(. ]
A0 =g p(4n) .

Definition 1,5 If 35 is a fuzzy G-algebra , amd if p is

a fuzzy measure on % , then we call (X,SE ) a fuzzy measur-
able space and (X, <% , m) a fuzzy measure space .
Defimition 1.6 Let (X,% , ;:}) be a fuzzy measure space

and (§+, ® , ©) be an ordered commutative semi-ring, we
call (Xj Z 2 Je R+y @, ©) a fuzzy pan-space .
§ 2 DEFINITION AND PROPERTIES OF FUZZY PAN-INTEGRAL

In this section, we will give the defimition of the fuzzy
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pan-integral and its elementary properties .
Defimition 2,1 Let (X,%) be a fuzzy measurable space ,

(R+, ® ,©®) be an ordered commutative semi-ring,
B={E; E€F, E is a classical set} (It is clear that B
is a classical 6-algebra contained in 6—,77': ) « Then

(1) If I is the unit element of (R+, ®,(®), the extended

real-valued function on X j

Xe(x)= (

is called the characteristic function of E, where E€73;
(2) The real-valued function s(x)

n
s(x)= @ (4;0Xg(x))
1=
is said to be a simple function on X, if O<o4<oo, By €B,

I if x¢E
0 if x€E

n
i=1,2,--n, and if oi=ol, EfNEj=@, 1kJ} quj;-ex .
We denote the set of all simple functions on X by S .
It is easy to prove that a simple function given in Defi=-

nition 2.1 has unique representation .

Definition 2,2 A mapping f; X~>(=~c0,00) is called a mea-

surable function on ?,E y 1f for any cie[-00y00] y We have
Fu={X: £(x)Zx} €% »
Denote the set of all measurable functions on % by }3 ’
and write Mt={f: feM , £20} .
Definition 2,3 Let (X,%, uy R+, ® ,0) be a fuzzy pan-
space, 5655; For any s(x)-i@:al (Ol,-OXE-’(x))GS, we write
Py(a)= O( %0 p(AMEL) ,
when fefrf, the fuzzy pan-integral of f on ’1\&’ with respest to
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J is defined by
(p) jéfdg-‘?‘::%n})’ a(s)

where s(f)={s; seS, Osssf}.
The fuzzy pan-integrals hold the following properties,
Proposition 2.1 Let f,geM*,A,B€%, then

(1) If f<g,then (p)jézdgs(p)fégd;g for any Ae€%

(2) () fy(2h@)ap < (0)f p2au(p)] paas 5

(3) () (2Vg)an = (p)f ATdp V(p)f pedn

(4) If AcB, then (p)jAfdp <(p)jB£d}a 3

(5) (p)jAanp<(p)jAm,u/\(p)j BT 5

(6) (p)jAUBrdp>(p)jAfde(p)jde}a ;
(7) 1£ p(A)=0, then “(p) Afdpao for amy feMt ;

(8) (p)jACdB> con(A) ,CeR+ .

Proof. (1) If f<g, then s(f)Cs(g), thus
(p))'Afdpmsu% PA(s)< su% A(s)----(p)f gy .
(2) since fAg< £, fAg<g, by (1), we have

(p)jé(ng)d}j <(p)Jéfdg and (P)jA(fA‘)d)Es(P)jAg%o there-

fore, (p)fA(IAss)d)gs(p)féﬂdg A(p)f pgap .
(3) By using (1) , it is easy to prove this conclusion.
(4) If ACB, then Py(s)< Pp(s) amd therefore
Pyt <o) fptan .
(5) It follews from (4) that (p)jAanp <(p)jAfd;u and
(p) f prptap < (p)fptan , thus, we have

(p) § s pntdn < (0) y2ap A(0)f ptap .
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(6) The proof of this conclusion is similar to (5) .
(7) Vvnhen },.l(é)=0, then PA(s)O for any s€S, thus
(»)J pfdp=0 for any feﬁ"' .
(8) Ob;ervo that 30=CO:{'Xes(f),where f=C, So, we have
(p)fAGdgz cou(al.

Proposition 2.2 Lt (p)[ pfdp=0, then p(ANFg)=0, where
Fan{x: £(x)> O} . -

Proof. Suppose that u(ANFg)=C>0, since ANFi7ANFg, by

the. :gontimuity from below of J, we have }.l(AﬁF.L)—))J.(AnF—-) =C,
thus there exists ng, such that p(AﬂFJ.)>§n70. Observe
that soa— G))(F_,_e s(f), it follows that
(p) JAmmsu?( @ (%4 Op(ANEL))) > - O p(AMEL) > 0
It is a comtradiction,
§3 SOME PARTICULAR FORMS OF FUZZY PAN-INTEGRAL

Obviously, 1f ,A.' is a classical set, then the fuzzy pan-
integral on A is the pan-integral defined in (1] . Further-

more, we have the following results;:

Theorem 3,1 For any given A€¢%, if we define
p*(E)é*)j(éﬂE) for any E€B,
then u* 1s a fuzzy measure on PB.
Proof. In fact, we have { -
(1) 7 (B)=(ANng)=(P)=0 ;
(2) If E CE,, Eq, Epe 93, then u'(Eq)<u*(Ep) 3
(3) Comtinuity from below : Let {ER}Cﬁ, En CEg,, n=1,2,",
then p*(Ten) 5(AN(EER) ) (T (ANER) ) =1im p(ANEW) =lim 1" (En)
(4) Comtimuity from above : If {Em}c /3, En> By, n=1,2,--+,
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and if there exists ng, such that u*(En,)<oco, then
P En) 5p(an( Q En) ) 57T (A1En)) =Lim p(ANER) =Lim p*(Ep)
That is to say, }1* is a fuzzy measure on ﬁ .

Thesrem 3.2 (Transformation theorem) Suppose that

(X, 35,, E) is a fuzzy measure space, ;/3.627,' :ﬂeﬂ"‘, we have
¥*
(p) féﬂga(p) JEm
Where (p)jxfd}z* is the pam-integral defined im [1] and w*

is the fuzzy measure defined in Theorem 3,1
n

Proof. (p)f’éﬂdp;ﬁ%g @ (o Op(AhEi))i::t(lp§ jC-__l-? (x; 0 p*(Eq)))

¥* n =
s(_s&)ﬂ (0 Op*(XNEE))) =(p) [ y2an* .

The theorem is proved.
Usinmg this transformation theorem, we cam prove the folw.
lowing two particular forms of the fuzzy pan-integral .
Theorem 3,3 Let (X,‘f:, A, R4y @ ,0) be a fuzzy pan-space,
Ae%, e, 1f (Ry, ®,0)=(Ry,V,A), then
() f atap=/ AT
where jéfd;:zﬁfé;tl\&(AﬂFq)) is the fuzzy integral defined
in [3].
Proof. For any A¢%, fég‘lf, it follows from Theorem 4,2 in
[1] amd Theorem 2.2 in [3] and Theorem 3,2 , that
(p) f 2au=(o) [y tep*=(e) [y 8% [ 2
where (s)jxid}u is the Sugemo fuzzy integral om X with res-

pect to }1
Theorem 3.4 Let (X, %, Ay R;y @ ,0) be a fuzzy pan-space,
,j}_ef, feg-'-' If (ﬁ.’.' @ ’@)g(-R—.'.'V '.)Q' thm
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(»J ptap=(0) f AZap
where (N)J Afdg-ilig(d&(AnFq)) is the (N) fuzzy integral de-
fined in. [4].

Proof. Using Theorem 4.3 in [1) and Theorem 3,2 , it is
easy to prove this conclusion,

§ & CONVERGENCE THEOREMS

Theorem 4,1 Let (X,,‘;v:, My v'ﬁ_,_, ® ,0) be a fuzzy pan-space,
{fmy £} C M¥, fn<Iny, mw=1, 2,---, and if fn—>f, then for any

Ae9, we have

rgg(p)fét,‘,dgn(p) J afop .
Proof, By using Theorem 3,1 in [1] and Theorem 3.2, for
any A¢%, we have
Ln(p) Ji Arnd;g-lngxgp)f Xfmd}l*"(P)j £ap*=(p) | R
As the corollary of Theorem 4,1, we have the following
Theorem 4,2 (Fatou's Lemma) Let (X, %, B Rip @D ,O) De
a fuzzy pan-kpace, if {fn}CM*, then
(p)f ; Lintndp < Ln(p)f ytndp .

~ R-»0O
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