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Abstract
The concepts of possibility measure and consonant belief
function on the fuzzy set are introduced and the results analo-

gous to (1] are obtained.
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1. Introduction

In part 2 of this paper, we introduce thé concepts:
possibility measure and consonant belief function on the class
of all fuzzy subsets of X, P-consistent and B-consistent of
set function, and also discuss some of their proﬁerties. In
part 3, we give two extension theorems of possibility measure

and consonant belief function. In part 4, we discuss the semi-

lattice structures of all extensions of possibility measure
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and consonant belief function.

Throughout this paper, let X be a set, F(X) be the class of
all fuzzy.subsets of X, and C be an arbitrary nonemnty subset
of F(X), p be a mapping from C into the unit interval (0,17,
and we make the following conventidn: V{t=4d, - g(g}: X,

(+) = 0, inf (-} = 1,
s;p{p } iz {n(-)}

2. Possibility Measure and Consonant Relief Function on F(¥)

Definition 2.1. A possibilty measure on F(X) is a non-

negative real valued set function ™ : F(X)— (0,11 with the
property:
K(1yrAt) = ?BP T(A,), whenever,{ét; te T} o F(X),

where T is an arbitrary index set.

Definition 2.2. A mapping A* from X into the unit interval
13
[0,1) is called a possibility distribution.

Theorem 2.1. A vossibility distribution A* defined on X

cam determine a possibility measure defined on F(X), and vice
versa.
Proof. We define a mapping
T : F(X)—10,1]
A r'—*fggi(‘.&ﬂ A*)(x)],

then 7 is a possibility measure on F(X). In fact, for every

{A_t; teT} e F(X), we have

(U AL) sup {{( |J A, )NA*}(x)} = sup(sup(A,N A*)(x);
reT =t xe¥ reT=t .

xeX teT

SUP(SUP(AtFIA*)(X)3 = sup TL(4,),
teT xeX teT
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where T is an arbitrary index set,.

On the other hand, let ® be a nossibility measure, then we

define

A*(x) = T(A), V x € X,

where 1 ify = x
A (¥)

I

b
{O , ify # X. , :
Obviously, A* is & possibility distribution on X, and we com-
plete the proof of the theorem,

Definition 2.3. A consonant belief function on F(X) is a

nonnegative real-valued set function f: F(X) — (0,11 with the
property:
B ( é}ﬂx) = &3; G (A,), whenever { A,: t€ T} c F(X),

where T is an arbvitrary index set.

Theorem 2.2. If ( is a consonant belief function, then T

defined by

nA)

1- G (A%), A € F(X),
is a possitility measure. Conversely, if T is a possibility
measure,.then ® defined by

B(a)

is a consonant belief function.

[}

1- T(A%), A € F(X),

Definition 2.4. p: C —(0,1] is called P-consistent, if for
every {A,; teT}ecC, A€ C, with ACH_(.)r A,, we have

A) < (A).
n(a) < iﬁ? p(Ae)

Similarly, we introduce

Definition 2.5. p: C—1(0,1] is called B-consistent, if for

e FES e et D e



I8

every {A : t€T}eC, A€ C, with A Dt!}gt,-we have

n(a) éti‘an M(Ay).

3. ©xtension Theorems

Theorem 3.1, u can be extended to a possibility measure on
F(¥), if and only if n is P-consistent. |
Proof. Necessity. Obvious. |

Sufficiency. If we define

T o F(X) —10,1)

B +— sup inf sup P(Es)’ (»)
SRR
Es €C

where S is arbitrary index set, then T is a possibility
measure on F(X), and a extension of p on C. To conclude the
assertions, we first prove that T is a possibility measure. In
fact, the monotonicity of p is obvious. By the monotonicity of
T, we have, for every {A,; t€ T }c F(X),

T8, £ (Y AL,

and hence

< TC .
P (A) € T A,

where T is an arbitrary index set.

On the other hand, for every xeX, t € T; and for any €>0,

there exists { E;; se S{} © C such that

(e B () = 4,00,
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and
inf sup p(E,) @ sup p(E,) -¢.
(UEs ) tx) 2 fiptx) segé seSY
se§
© Ege(
Since

(teq sys: ) (%) o be(x) = (tg'f 470,

it follows that

su inf sup pn(E.) = sup‘sup (E.) =-¢
tewp C Va Eg)(x)2 Apx) seS"P1 s teT seS'iP :
5Gsk — t
Ec e C

= sup  p(Eg,) -& 2 inf sup p(ﬁ) -&,

set:Tst ( Sgs,ﬁs)(x) z (thﬁt)(") SES

EseC
this shows that
SUD Ssup inf sup, p(E;)
xeX teT (stés"t Eq )(x) 2 A (X)) seSt
Eg € C

> sup inf sup p(E;) - ¢,

xe X (Sysx ES)(X)Z(&T AX)  seS”

Ec€C

it yields that

e
fep A & T LY A

Consequently,

TC =
f?? (A) =@ (tyT A),

which means ™ is a possibility measure.
Next, we prove that ™ is an extension of p on C. In fact,

for every B €C, we have
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T(B) = sup inf sup n(E.) € sup p(B) = u(B)
xex (U Es)(x)?ﬁcx) sc8¥ ) xe X '
se
Es;€C

On the other hand, for any & > O, every xe¢ X there exists
{2 s¢81<C such that

B(x) = (535525)(X) € Eg)(x),

( U
se us?*
XEX

and

inf sup p(E ) = sup pn(E;) - &,
<$US1§.5)(X)>§CX) ses” seg¥
“Ecec '

hence, by using the P-consistence of u,

T (B) = sup inf sup p(Ey)
xe X (SKGJS,E_S)(X)zg(x) sest
EseC |
> sup sup p(E{) -& = sup , p(E;) -¢& = p(B) -¢5
xeX 8€8 seuys
x e X
therefore
T (B) = p(B).
Consequently,
T(B) = p(B),
and we complete the proof of the theorem. 1

Theorem 5.2. p can be extended to a consonant belief func-

tion on F(X), if and only if p is E-coﬁsistent.

Proof. The proof is similar to that of theorem 3.1, we only note
that if p is B-consistent, then p is a consonant belief func-
tion on F(X), and it is an extension of pu, where p 1is defined
by

B : F(X) —10,1)
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A +—— inf sup inf p(E;). (%*) \
xe X (sQS"'E")(X)S A(x) 'SeSK '
- Ege(

4. Semi-lattice Structure of All Extensions

Tn usuél case, the extension of a mapping u with P-con-
sistent from an arbitfary nonempty class of the fuzzy subsets
'of X into the unit interval [0,1] to a possibility measure on
F(X) may not be unique. Similarly, the extension of a mapping u
with B-consistent from an arbitrary.nonempty class of the fuzzy
subsets of X into the unit interval (0,1) to a cbnsonant belief
function on F(X) may not be unigque either, All exteﬁsionsvof
possibility measure (consonant belief function) is denoted ET&p)
(Eﬁ(p)). Ry using theorem 3.1 (3.2), we know that E.(p) (E;(p))
is nonempty, if p is P-consistent (B-consistent).

For two mappings m, : F(X) —1[0,1] and p, : F(X) —(0,11, we
define ordering relation ' & "

po £ p, if and only if p,(A) ¢.p, (A),V A € F(X).

Tt is easy to prove that " £ " is a partial'ordering relation'on
E.(p) (Similarly, on Eg(p)). Therefore the least upper bound of
B, U € E{p) can be defined by |

(sup { m, ,p.1 )(A) = p(A) vp.(A), for all A ¢ F(X).

Similarly, the greatest lower bound can be defined by

(inf{ p,,p.})(A)

p, (A)A p, (A), for all A ¢ F(X).

Theorem L4.1. (Eq(p) , % ) is én upper'semi-lattice, and the

extension T defined by (*) is the greatest element of Ex(p).
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Proof. a) Obvinusly, (E,(p) , £ ) is an upper semi-lattice.
b) The extension ™ defined by (*) is the greatest element of

e Ba(u). For arbitrary o' € £,(u), B € F(X), we define

F.y) = inf (U EDN(x) if y = x;
(U, E )2 B(x) Ses
5€8
EceC
=0 if y £ x,

for every x ¢ X. If B(x) £ ( L E)x), E, . C, we have

o
— c Sgs~ =S
hence
' (E,) & sup m'(E,),
. ses”
therefore
' (F,) ¢ inf sup ' (E;)
( UE (X)) >B(x) se&
ses
Es€C
= inf sup p(E ),
(U ENX) 2 BOO ses’
5€¢S =
EseC

for every x ¢ X, it follows, by using

B(x) inf (U E)(x) = E (%) £ £ (U F,)(x),

( U Ed(x)2Bxy  se8 xeX

5¢g

gsec
that
T(E) = sup inf sup p(E,) = sup ' (E,)
xe X (LJ EN(X)»B (x) sed” XxeX .
SG .
EceC

= '(UV E) 2 n'(B).
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Similarly, we can prove
Theorem 4.2. (Eg(p), ¢ ) is a lower semi-lattice, and the

extension B defined by (**) is the least element of Eﬁ(p).
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