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Abstract

In this paper, we introduce the concepts of the o-possi-
bility measure and the CP-gystem and the ECP-system on a
class of fuzzy sets,and show that such ac-possibility
measure must be a semi-continuous fuzzy measure. Furthermore,
we establish a necessary and sufficient condition for that
a o~possibility measure on a class of fuzzy sets may be
extended, and prove some extension theorems of such o-possi-
bility measures, and therefore, we solve the extension prob-
lém of a class of semi-continuous fuzzy measures.

Keywords: Fuzzy measure, ¢-possibility measure, CP-system,
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§1 Introduction

On a class of classical sets, the possibility measure
introduced by L.A.Zadeh (8) is a special semi-continuous fuzzy
measure, and it is difficult to establish a general extension
theory for the semi-continuous fuzzy measures though some
extension problems of possibility measures have been better
solved (ecf.?1,2,6,7)), in order to find out as many extend=-
able semi-continuous fuzzy measures as possible, Qiao(5)
introduced and studied the o~possibility measures. If these
similar problems are discussed on a class of fuzzy sets, it
is undoubted to arise a great many difficulties, In this
paper, we shall introduce the concept of the semi-continuous
fuzzy measure on a class of fuzzy sets and shall solve the
extension problem of such a class of semi-continuous fuzzy
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measures,

Throughout this paper, suppose that L is an infinitely
distributive complete lattice, in other words, the lattice
L satisfies the following conditions:

(1) For any H€L, Ah and Vh are existe#t in L;
h€H heH

(2) For any HcL, aeL, we have

aV( Ah)s= hg\,(th), aA( vh)= V (aAh).
héH H hé¢H h¢H

And let X be a nonempty set, 8()():3{,95 3 At XL} be the class
of all L-fuzzy subsets of X, 8 and ®* and § be nonempty sub-

classes ofE(X), {A,} be a finite or infinite sequence of L-
fuzzy subsets of X and we make the conventions:

sup{at; a,€ (oy=)} =0, U{.}=¢ , where ¢ is the smallest
t€¢ 1712 20 -~

element of %(X).

§2 Semi-continuous Fuzzy Measure and o-Possibility
Meagure on Class of Fuzzy Sets ;

Definition2,1 A mapping p:§-—» (0,a) (where a is an
arbitrarily positive real number or +co ) is called a semi-
continuous fuzzy measure on g y 1f it satisfies the follow-~
ing conditions:

(SFM1) &( ¢)=0, if 280 ;
(SFM2) For any A B¢ , if AcB , then g(A) € u(B);

(SFM3) Whenever {'{\n)cg ’ f‘f €~ s A C%H y N=1,2,

oo
en ¥ n=1~n) lim (0 ~n)

It is easy to see that the fuzzy measure studied in(3,4)
is a semi-continuous fuzzy measure,

Definition2,2 A mapping x :f-»(©,a) (where o<a<ow) is
said to be a e-possibility measure on §) , if and only if
the following holds:

@P1) 5(3)=0 , if ¢€ P ;
(¢P2) & is o-fuzzy additive, that is, for any {A g, if
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UAED, then (U A )= sup x(4).

when L={0,1}, such g is ae-possibility measure introduced
in®J), and therefore, it is a generalization of the possibie-
lity measure,

The condition (eP2) implies the monotonicity conditions
(sP3) For any A ,BEH, if AcB, then z(A)<z(B).

In the following, we shall discuss the relations between
o~-possibility measures and semi-continuous fuzzy measures.

Theorem2,3 An arbitrary o-possibility measure on £ is a
semi-continuous fuzzy measure on § .

Proof. Sappose that g is a e-possibility measure on § ,
it is clear that s satisfies the conditions (SFM1) and (SFM2).
Now we prove that s meets the condition (SFM3) as well,

For any increasing sequence {An}cg with g Aneg , by using

conditions (¢P3) and (¢P2), we have ,g(én)<g(én+1),n=1,2,m ,
and lim (A )= sup 2(4 )= 2(U 4).

That is, % is a semi-continuous fuzzy measure ond) .

The following theorem gives a necessary and sufficient
condition for that a semi-continuous fuzzy measure on Q turns
into a ¢-possibility measure on O .

Theorem2,4 Let g be a semi-continuous fuzzy measure ong,
D be closed under finite unions. p is a oc-possibility mea-
sure on® , if and only if g satisfies RB(A U B)=u(A)Vx(B)
whenever A ,B¢9,

Proof. The necessity is obvious. Now we prove the suffi-
ciency.

Evidently, p satisfies the condition (¢P1).

Let 1(AUB)=£(A) v (B) for any A ;B€D. If (4 )cPand

m.
g_%eog , denote gm=n215a, m=1,2,-"*, then {B } is an

increasing sequence ind) and H ‘én"g B thus we have
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2(Y 4)=u(U B )=lim u(B)=sup 5(B;)=sup(, sup n(4,))=sup u(4,).
That is to say, u is a o-possibility measure ong .
§3 A Extendable Necessary and Sufficient Condition

Let U(8 )={U : Land and we make the convention:
e (~ ) {n ;én’ {‘%} g } ’
3=tg¢{- y€ U(D), then U(H) is the smallest class which is

both includingg and closed under arbitrary countable infinite
unions. In the section, we shall establish a necessary and
sufficient condition for that a oc-possibility measure ong.may
be extended to U(L ) uniquely.

Definition3.1 A mapping u:§ —» (0,a) (where o<a<oo ) is
called consistent, if for any A € £, whenever ﬁcg An ’
where {4 }< 0, we have wu(p< sgp g(;}n).

Theorem3,2 A ¢-possibility measure z on  may be extended

to a e -possibility measure @ on U(D ) uniquely, if and only
ifzx is consistent,

Proof. Necessity: Let £ may be extended to a o-possibility
measure ' on U( ) uniquely.
For any A€ £, if gcggn , where {4 }< &, then

A ,H,l_&,ne U(D ). Thus
)= =(H) < ,rg(g Ap)=sup x'(4,)=sup z(4)).
That is, & is consistent.

Sufficiency: LetZ be consistent, For any B €U(f) ), then
there exists {4 }= £ such that B=U A, . We define

, a
2-(2) = Sgp,ﬁ(,én)-
This definition is unambiguous. In fact, if gsugm » Where
m
{Bte O, then A = B=UB, for any A4, , thus ,g(,én)t; s%pg(gm),
and therefore, sup % (A,n)<sgp = (§,m) . Analogously, we Ipay

show the converse inequality. Consequently,
sup % (A )=sup = (B ).



When Be€§ , we have g(g)-sgp .’3(—%)“2(3 A)=xz(B).

Furthermore, we are going to show that mx is a ¢-possibi-
lity measure on U(H ).
(1) By the conventions: tle{b{‘)gz ’ EBB‘%* a, €(0,00] } =0, then
(9 )=%ug{-}=0, namely, «'satisfies the condition (oP1).
¢
(2) For any {Bt& ud), gnzg ‘ém‘n’ , where {,gn‘lm}c 9 ,n=1,2,,
_ m)
since g,@n-gg A", then
(UB )= su ATy =sup (su AT Yy =sup ='(B .
=(UBy) m,§3(~m )=sup (sup x (&, ™)) =sup ='(B,)
That is to say, x' satisfies the condition (¢P2) too.
Thus, ='is a o=-possibility measure on U(D ).
Finally, we prove the uniqueness of x'.

If m* is another extension of g on U($ ), then for any
B=U A € U(8 ), where (A} O, we have

zj(@)w}-llpg(,én)=sgpy(%)=£"(g A)=2(B).

Remark: If take L={0,1}, the above Theorem3.2 coincides
with the Theorem2.2 given in(5],

§4 CP-system, ECP-system and Weak Plump Field

On a class of classical sets, Qiao(5,6) drew the concepts
of the CP-system and the ECP-system from the class of all
atoms of a set class introduced in(1,2,7). In order to
discuss some other extension theorems of c-possibility
measures given in §2, in the section, we shall give several
similar concepts on a class of fuzzy sets.

Definition4.1 A nonempty class $ of fuzzy sets is said
to be an ECP-system, if the following conditions are satis-
fied:

(ECP1) The exchangeability. For any Ay A€ %, then there

n
exist B,, *,B €H such that n A=UB.;
i=1 7" §=1Y
(ECP2) The closeness for the partial covering. For any AeBR,
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if AcU A, , where {A 1B, then there exists one subset

{Ags tE€T ) of {A)) such that Ac UA€R.

If a class of fuzzy sets only satisfies the condition
(ECP2), it is called a CP-system.

In the following, we shall always denote the ECP-gystem
(resp. the CP-system) by 8 (resp. B ).

Evidently, if a class of fuzzy sets is closed under
countable infinite unions, then it is a CP-system, An arbi-
trary fuzzy e-algebra introduced in(3,4) is an ECP-gystem.
The class of all atoms of a set class given in(1,2,7) is an
ECP-system, If @ is closed under finite unions, then it is
closed under finite intersections, but the converse proposi-
tion is not true,

In fact, if A ,B € %(X), ANB=¢, and if there is no
inclusion relation between A and B , then B=(¢,A ,B} is an
ECP-system, and it is closed under finite intersections, but
it is not closed under finite unions,

Definitionk.2 A nonempty class of fuzzy sets is called a
weak plump field, if it is closed under arbitrary finite
intersections and arbitrary countable infinite unions,Denote
the smallest weak plump field including § by W(D).

Proposition&.3 W( )={ U n A s Ag 1, wvhere T is an

teThﬁSt
arbitrary finite or countable infinite index set, and S
an arbitrary finite index set whenever t €T,

Proof., Write _A={(U NA 3 AED? .
~ teTseSt

First of all, we verify that £ is a weak plump field.

(1) Let (B} < where B=U qnA‘® APy, T is an
é’ ~nt€T seSNS ’~s

arbitrary finite or countable inflnite index set, St is an
arbitrary finite index set, then

B =U(U (n) =U U n A(n) (n)
d Zn g‘.ET seSt"’s ) ntéTn(aegt"'s )= t(—T seS-t~s Eﬂ ’

where T'=y T, namely, A is closed under countable infinite

_tis
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unions.

(2) Let Dy= Uu n Asv
teTseSt

T and J are two arbitrary finite or countable infinite index

sets, and for any t €T, j€J, S and Ij are two arbitrary

finite index sets. Observe that L is an infinitely distribu-

tive complete lattice, we have

b,nD=( U n A)(U n B

D,=U_n Bie,«or, where A, B; € O,

€Jie -~
JJ.IJ

)=Ul( U n A)ﬂ(n B.))

teTseS, °  Jediel, ~1T e terses,” ite”I
=UCu n A )n( n BEA .
jeJteT s-;(-S,c I;j

That is, 4 is closed under finite intersections,Therefore,
Ais a weal?plump field.
~ Furthermore, since D =4, then W(E) = A, and it is
clear that ¥ = W(£ ). Consequently, &4 =W(D).

Propositioni.4 W(8)=U(8).

Proof. Using Proposition4.3 and the definitions of £ and
U(g ), it is easy to prove this conclusion,

§5 Extension Theorems of ¢ -Possgibility Measures
on Class of Fuzzy Sets

In the section, several extension theorems of c-~possibi-
lity measures wil} be proved, when L={0,1}, these conclusions
coincide with the relevant results presented in(5),

Theoremb.1 An arbitrary c-possibility measure = ong‘may
be extended to a ¢-possibility measure »' on U(g) uniquely.

Proof. We show that = is consistent.

Since g"is a CP-system, for any A € {g*, if AcU A, where

{An) cﬂ" , then there exists one subset (Ab; t €T} of {'A—n}

such that A c U A, € B , thus
rer—t

2(A) < z( UA )=sup=n(A ) <<sup=x(A ).
T et ter~ ~t Tn ~n

That is to say, = is consistent. Using Theorem3.2, = may
be extended to a e-possibility measure x’'on U($) uniquely.
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Theorem5.2 An arbitrary e-possibility measure =z an§§ may
be extended to a ¢-possibility measure z' on W) uniquely.
Proof. By Proposition4.4 and Theorem5.1, it is easy to

verify that the conclusion is true,

Theorem?,.,3 and Theorem5,1 and Theorem5.2 show that all
of e-possibility measures in the class of all semi-contin-
uous fuzzy measures may be extended fromB* (resp. B ) to
U( ®*) (resp. W(®)) uniquely. The following theorem gives
a sufficient condition for that a semi-continuous fuzzy
measure can be extended uniquely.

Theorem5.3 Let $ be closed under finite unions, u be an
arbitrary semi-continuous fumzy measure cu1§§ such that
p(AUB)= u(4)vu(B) for any A ,B € $ , then u may be extended
to a semi-continuous fuzzy measure u'on W(% ) uniquely.

Proof. It follows, from Theorem2.4 and Theorem5.2 and
Theorem2,3, that this conclusion is true.
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