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SOME NEW RESULTS FOR P-MEASURE
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1o BQUIVALENT DEFINITIONS OF P-MEASURE

By fuszsy measurable space we mean a pair (S ,§) , where L2
is a crisp set of elementary events and © is a soft fuzzy G=al-
gebra i.e, fuzzy algebra in the sense of Khalili [1] notcontaining

[ % k‘ﬂ."’{%} (soe [4]) . Elements of © are interpreted as
fussy random events. In [4] probability of fuzzy random event is

described by fuzzy P-measure which is empatible with following defi-
nitions (W(SL) is the family of all fuzzy subsets in S ) .

Definitiom 1.1 [3] s An element |LefP(&) will be called &
Weuniversum if it comtaims its complement (1.es WP H1-R) .

Definition 1.2 [3] : An element I&-GE‘ (J2) will be called a
W-empty set if it is contained im its complement (i.e. W £ 1= tt.) .

Definition 1e3. [3] 3 Elements N,V 6€ W(S) will be called
W-geparated fuzzy snbset_;a if the first is contained in the comple-

ment of the second (i.e. <= ) .

The following definition of fuzzy P-measure was given in [47] .
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Definition 1.4 [4] : A mapping pz'G' -——718"'\;‘{0} with the proper=-
ties
(»1) it ® e b is a Weuniversum then
p(p) =1
(P2) for any sequence {hJ c § of pairwise W-separated fuzzy

subsets we have
p (sup {k o) = 2, ply) (1.1)

will be called a fuzzy P-measure,

Moreover, we have following eqﬁivalent definitions of fusgy P-me~

asure,

Theorem 1.1+t A mapping pt1®—> B*'w {0} is a fuzzy P-measure iff

it satisfies:

(P3) for each such sequence {p—n}- &5 of pairwise Wesepawated
fuzzy subsets that s:p {r_n'l, is a Weuniversum we have

1=20 Pipy) o (1.2)
Proofs The necessity is proved in [4] « On the other side, the conw-

dition (P1) follows immediatelly from (P3). Furthermore, the condi=
tion (P3) implies,

p(1=-p) =1=p( (1.3)
for each ,.;. s 5 Therefore, for any {r«-n}C © of Weseparated

fuzzy subsets we have

p Caup { ey Jv (o - sgp{l"n}» =1 =T plry) + 200 - sgp{y.n",) -
= Bk plRy) +1 - p(s:'P {"'n.n

because?
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- K and 1 - sup {"‘n" are Weseparated for each positive in-
teger k 3 ?
- s;p {'LK’SV('I - sup {P‘n}) is a Weuniversum (see [5:]) .
n

So, the condition (P2) holds. M

Theorem 1.2.: A mapping p: S —> R*v {0} is a fuzzy P-measure
iff it satisfies (P1) and:
(p4) if WV € & are Wegseparated then
plpyv) =p(p) +p () (1e4)
(P5) if {}Ln} c b monotonously tends from below to pets
then {p(p.n)} tends from below to plp) .

Proof: The necessity is proved in [4] . If {l‘-n} e & 1is any se=~
quence of W-separated fuzzy subsets then, using the mathematical ine

duction and (P4), we get

( max ) = k__ (

P nek {hﬂ zn“q P V“n)

for each positive integer k o Thus, by means of (P5), we obtain
(r2). W

Observe that the definition of Weseparateness given above (Dei’.’l.}j
is not only one possible. Perhaps the more natural would be the fol-—

lowing definitions,

Vefinition 1.5, [7] : Elements fa¥ & FGR)  will pe called
F=geparated if their intersection is a Weempty set Ki.e. ‘LA\?\([ % ]&)

Of course W=separated fuzzy subsets are F=sgeparated but not vice

versa., If we change in the Definition 1.4. the notion of W-separate-
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ness by the notion of Fe-separateness, we obtain formally stronger

version of the notion of fuzzy P-measure, Nevertheless, we have:

Theorem 1e3s [7] ¢ A mapping p:G-—o Ry {O} is a fuzzy P-measum

re iff it satisfies (P1) and:

(P6) for any sequence { 'pn} c G of pairwise F-separated fuzzy
subsets we have (1.1).

Theorem 1e4e: A mapping pt G- rYv {0} is a fuzzy P-measure iff
it satisfiess

(P7) for each such sequence {"'n} c B of pairwise P-separated
fuzzy subsets thet sup U"n} is a W-universum, we have (1.2 )
n

Proof: The necessity is self-evident., Since r\, and 1 - W are
F-separated for any L € € , (P?) impries (1.3)e Thus, in like man=
ner, as (P2) in the proof of the Theorem 1.1, we get (P6). W

Theorem 1¢5¢3 A mapping p3® = lR"'u{O} is & fuzzy P-measure iff
it satisfies (P1), (P5) and: |
(p8) it }L,V €S  are F-separated then (1.4).

The last theorem can be proved by analogous way &8 the Theorem 1.2,
2e AN EXTENDED DOMAIN OF THE BAYES FORMULA
Take into acceunt the following families of fuzzy subsets
K(6) = {A: Ae¢ 2% .3 | ¢ § E(p)e AcL(pw)y,

B () = {mipe FOR),3 4,BeK(E) ; 4<B, 4 = K(p) ¥ B = L(p)
E*E) = {p: e B(8),Ive6 jpali -p)9a(1 -0},

if

]
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BS) = {p:pe BS),IVe T ; K¥Mp) c ¥
where
K(p) = {wiwe, plw)) %} .
K*() = {w: w52 p(w) = %} ’
L (p) =K (pv E¥ W)
for each p-¢ (&) . Then we bave E*(8)cE(S)cBCS) and

Theorem 2¢1s [5] ¢ K(5) is a crisp G-algebra,
Theorem 2.2, [ 5] t B*(S) is a soft fuzzy G-algebra.
Theorem 2,3, (6] : B (®) is a soft fuzzy algebras
Theorem 2,4 [[5] s B (5) 1is a fuzzy algebra containing { % ] Q°
The problem of the smallest soft fuzzy =algebra containing
E(s) is open.
Let p:&-> R*'v {0} be a fixed P-measure which is interpreted
as probability of fuzzy evemts. Recall to mind that Antoniewicz and

Ostasiewicz propose to describe probability of fuzzy events by means
of the plausibility measure defined as follows:

Definition 2.1, [[2] ¢ A mapping pls: §— [0,1] is a plausibilie
ty measure if it satisfies

ple(0g) = O | " (2;1)
pls(lg) = 13 (2¢2)
k€9 = pla(plig s (3 (243)

pls(yw?) = pls (p) + pls(N) - pls (g av) (2.4)
for each 't&,\’?e‘: H
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Any fuzzy P-measure is a plausibility measure (nee [4]) » Further-

more, we have:

Theorem 2,53 Let € & | Then, for any plausibility measure, we
haves

- pls (kv<) = pls (B) forall pe® iff ples (V) = 0 j
- pla (nA?) = pls () forall M€ S  iff pls (V) =14,
Proof: If for all K €S  we have pls(uv~) = pls(pw) then,
for k=0 , from (2.1), we obtain |

0 = ple(0g,) = pls(Og,v ™) = pls (w) e
If pls(9) =0 then for all nevw we can write

PAs(pvy) = pls (p) + pls (V) = pls (mav) = pls ()
because Ogpls(p AV)Kpla(¥) =0 ., |

If, for all @ €§ , we bave pls (pAV) = pls (p) then,

for p=1g , by (2.2) we get |

1 =7pls (1g,) = pls('ﬂalx\'?) = ple(v) .
If ple(¥) =1 then, for all &S , we have 1%pls(pv)>
Yple () =1  and thus, using (2.4), we obtain

pls (i AY) = pls (p) + pl(¥) = pls (P v¥) = pls () B

The further ou+ conaiderations are baged on the following theow

rems,

Theorem 2,6, C5j ¢t The mapping P3 K(S)—> [0,1:[ s 8lven by
Y AeK(S) P(4) = p(n) if EK(pmle AcL(p) (245)
is well-defined usual probability measure on I[K(®)

Theorem 2.7« [5] ¢ The mapping p: E ()= [0,1] , defined by
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PIp) = P(E(p)) (2.6)
for each € £(s) , is the unique extension of fuzzy P-measure
P on © which is a fuzzy P-measure on 3 (8) .

Theorem 2,8, [5] s The mapping p: E(8)->[0,1] , defined by
(2.5) and (2.6) for each e B(S®) , is the unigue monotonic ex=-
tension of P on E¥(S) to B(E) which satisfies (P6).

Theorem 2,9+ [6] : The mapping ) E(s)~’> [0,1] , defined by
(2¢5) and

() = PL (W) (2.7)
for each M € E(s) , is the unique extension of p on &
to [(®) which is a fuszy P-measure on & () &

Theorem 2,10 [6] s If a plausibility measure pis: [E(S)-D Co,1]
satisfies

Ve EH(S) pls (k) = P (W) = B(pM) (2.8)
then it fulfils |
Y pes () P(p)<pls (ISP (W) (2.9)

So, the mappings p and T ocan be interpreted respectively

as a lower and an upper extensions of fuzzy P-measure on ) to
€ (6) . Each plausibility measure satisfying (2.8) will be called
an extension of fuzay P~measure p on € to B(S)

Let pls“: E(s)~> [0,1] be a fixed extension of fuzzy P-mea=
sure p on §& to [E(S) + Then, for each possible fuzzy cone-
dition ¥ ¢E(S) (i.ee p1s® (v) ¢ 0) , & conditional plausibiw
1ity ple*(-1v): EB(§)— [0,1] 1is given by
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e 1 »( AV) :
pls (M‘\V) zﬂ-grg#rg)—- .

for each p€EB(6) . Firstly, we have:

Theorem 2,11t If <V eEC6)  then
PLs® (M 19) =P (pe IV (2.10)
for each - e[E(S) .
Proof: We have K¥(p-A9) = K*(n)n K¥) ¢ k%) . So, pAVE
«&(S) , Taking into account the theorems 248ey 249+ and 2410, we
get ple®(mav) = P(prA¥) and pla®) =5 () M

Moreover, we define a Bayespartition as such sequence g\') n.ﬁc
B(S) of pairwise F-geparated fuzzy subsets that it contains only
possible events i.e. pls“"(x?n) =0 <foreach n and sup{v ]}

n

is a certain event i.e. pls®(sup{v ) = 1 ‘. Take into account the
Bayes method of inference on exbgnded domain E(S)  Bach element
of Bayes partition {9, ] will be interpreted as a diagnosis.
Furthermore, let ‘u.emcs) be an imprecise image of symptomse.
Since any extemsion of p om &  to EC) isa fuzzy P-mea=
sure, if txsﬁ 4y and i'\'?n} ¢ B CS) then the conditiomal plawe
sibility pls®(9, 1 ®) is explicitly given by the usuel Bayes for-

mula (see C71)

ple*(v I p) = PIlp) =

Flpioy) FO P
SLPmIN) PO
Since ruzzy P-measure p on § cannot be extended to [B(S)
(see [5:]) , the Bayes formula (2:11) cannot be generalized to the
case W eE(S) and {~7n"|clE(G) + On the other side, from prace

(2.11)

tigal pointeview, the domain of symptoms should be as possible extenw

sive, The next theorem presents some explicite gemeralization of the
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Bayes formula to the case of a symptom from [E(S]) ,

(Theorem 212t The identity (2.11) holds for the cases:

- WeEC®) and {'°n7\ < B¥Y(S)

- peB(S) and {9 cE(S) is £inkten

Proof: Note that if {9 ﬁc B*(S) or 93¢ & (S) is fini-
te then sup fr?n'ﬂe E(S), Thus

pls*(p) = ple¥(pa sup 19,50 =B (RA sup ™ 7|)

=32 F (n9y)- 59 -
The refore, we get

¥ M&) P AW
x 4 pis™( ;
pls (. k‘ W-(EP) Zn P ('A\q ) P(Qn)

P(Pl'O;) P )
TR T R

Of course, the last theorem can be generalized for the case of such
Ao
5\'\7n1‘c EC6) that sup {-On".c E(S) . Furthermore, in the general
n .

cagse we haves

Theorem 2,13: If peé E(E) and 2, Y<c B(S) then
Pllvy) Py P (1) B09y)
2, Flab) P 2L PrIv))- )

Proof: Using the Theorem 2.5 we get

pls¥Q  Ap) pls¥ (9, A p)
pls"'(! = Pla¥ (,msgﬂ )

e § p1s* (9,1 p) &

pls' ~® k‘ }L) =

Thus, by (2.9), we ob%aln 5\ o
@ Ap) (W 19)- 8C9)
»
pla®* (9, (p) ¥ rp-:\suphn\) m Blp (9 ),N
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and
FEGAR) B9 Tl
? (#4sp -~ ’0 P(Bup {w%ﬁ)

Pls“ (= k | F) v ——

P(mIv k) PQ E)

zzn Pl ) )
because, by the continuity from above of P (see [6]) and by
the mathematical induction, we get

TP lplag) $9p) = lim (T4 Flmi2 ). F9 ) +

+ S(g;zgﬂu 2 )Y ?(5:1’ i avgh)
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