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FUZZY BOOLEAN ALGEBRA AND ITS PROPERTIES

Xuhua Liu and Ju Ye
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Jilin University, Changchun, P.R. of China

The concepts of fuzzy Boolean algebra,normal fuzzy Boolean algebra, and
the base of a finite fuzzy Boolean algebra are introduced in this paper.
The conditions are discussed under which a fuzzy set can be formed into a
fuzzy Boolean algebra and a norsal fuzzy Boolean algebra. And the elemen-
tary properties of fuzzy Boolean algebra are explored. The necessary and
sufficient condition for the existeace of the main base of a finite fuzzy
Booean algebra is given.

1. Introduction 4

Since Zadeh introduced fuzzy sets [1], many fuzzy mathematical systems have
been proposed and being researched. However,as the classical truth set for fu-
zzy sets is the unit interval [0,1](see [1] & [2]),and the complementarity law
doesn’t hold for this interval under the maxi-min priciple, the work for fuzzy
Boolean algebras has made little headway. This paper,making use of the concept
of fuzzy point [3), presents the concepts of fuzzy Boolean algebra, normal fuzzy
Boolean algebra,and the base of a finite fuzzy Boolean al'gebra. Then the con-
ditions are discussed under which a fuzzy set can be formed into a fuzzy Boo-
lean algebra. And the elementary properties of fuzzy Boolean algebra are ex-
plored. The necessary and sufficient condition for the existence of the main
base of a finite fuzzy Boolean al‘gebra is given.

2. Fuzzy Boolean algebra

Definition 1. Let (L,<_ ) be a lattice.If to each element A in L corres-
ponds an element A’ such that

D Ay <L Az &2 < AL, 2) (A')'=A
then the lattice is said to be complemented [4].
Definition 2. Let X be a set, and L be a complemented and bounded lattice,
denoted by (L, :,’,+,0,1) [4]. Then a fuzzy set A of X is characterized by
a function ps : X—L from X to L, called the membership function.

Definition 3. The support set of a fuzzy set A is
Sa={x|x€X, ua (X)#0}.
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Definition 4. Let A and B be both fuzzy sets of a set X. If up (X)&
Ha (x) for all x€ X, then B is called a subset of A ,denoted B A for short.

" Defimition 5. Let A and B be both fuzzy sets of a set X.Then A is said to
be equal to B, written A=B, if ua (x)=up (x) for all x€ X.

It is obvious that A=B. is equivalent to ASB and B&A.

Defimition 6. A fuzzy point s, ia X is a fuzzy sel with membership function

A, for x=a,
13 (X)-{

0, otherwise,
whore a€ X and A € L. a, is said to have support a and value A.

Obviously, it is true that a. =b, for all a,b€ X,and in case a and B are
aot both the value 0, ay #bs if and only if ab or a¥ 8.

Defimition 7. Let A be a fuzzy set of a set X, and a, a fuzzy point in X.
We say that a, belongs to A,or a, is in A,denoted a, € A,iff a€ Sa and
A<, Ha (a), vhere < is the partially ordered relation in the lattice L.

Particularly, if the fuzzy point 8y is in A, 8, iS referred to as a main

fuzzy point of A, written 2.

[t is evident that ag. € A iff ua (2)F0, i.e. a€ S .And it is easy to
see that B A is equivalent to x, €A for all x, € B.In fact,if B A, then
obviously, Sg &Sa ., and for all x, € B, we have x€ Sp &Sa tad AL,
us )<, Ha (x),so that x, € A. Coaversely, if x, € A for all x5 €B, then
for all x€ S we have Xy,00 €A 5O Hp (X)<L, t#a (x).In other hand, for every
X€E(X-Sg ),we have pug (x)=0< - B a(x). Hence, we have up (X)<p Ha (x) for
any x€ X, that is, B&A. '

The above results show that in the view of fuzzy point, 2 fuzzy set may be
viewed as a crisp set. The symbols &= and = may be seen as the ordinary inclu-
sion and equality of sets, respectively. And a fuzzy set A may be viewed as a
crisp set composed of all fuzzy poinats of A.

Definition 8. We define the relation < between two fuzzy points x4 and y, by:
Xg <Yo is aa abbreviation for x=y and a <, B.

Definition 9. Let A be a fuzzy set. ‘A fuzzy operation on A consists in as-
soiating with each ordered pair (xu »¥s ) of elements of A a third element 2z,
of A, written zy =xq Qys ,» such that

1) for all x4 ,ye € A, the support of xn OYe s Z;

2) for all uy ,vo €A, the value of uy ©Qvy is Y.

.De[inition 1. Let A be a fuzzy set, and let x and €@ be two [fuzzy operations
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on A. 1f for all xy ,y¥s »2y € A, the following hold:
1) Xa XYo =Ys *Xa » and Xg ©Ys =Ys Dxa
2) xq ¥(¥s Dzy )=(xq ¥¥s YD (xa ¥2Zy ), and
xq ©(¥s ¥2Zy )=(Xa DYy I¥(xa D2y )i
3) there exist two fuzzy points cg and eg in A such that
Xa Dce X » 80d Xg X85 =Xg ;
4) for each main fuzzy point W€ A, there exists a fuzzy point
v, € A such that
uxv, >cg , and uPv, <es , we often write ~u for v, ,
then (A, % @, ~,ce ,e5 ) Is called a fuzzy Boolean algebra.
In particular, if the condition 4) holds true for equalities, namely, uxv, =cg,
and aDv, =es , then A is called a normal fuzzy Boolean algebra.

Theoren 1. Let (A, % @, ~,cg ,es ) be a fuzzy Boolean algebra, and S, the
support set of A. Then S, nay be formed into a Boolean algebra.

Proof. For all x,y€ Sa , there are fuzzy points x4 ,¥s €A. Let vy =Xg %Ya,
and vg =Xq @Dys . Then uy € A and v € A, so u€ S, and v € S, ,and u,Vv are
uniquely determined by x and y, in other words, u and v are independent of the
values a and B. We define xy=u and xUy=v. Then  and U are two algebra
operations on S, .

It is not difficult to verify that

i) the operations N and U satisfy comautative laws and distributive laws;

ii) the elements c and e belong to S, and xUc=x, xNe=x for all x€ Sa;

iii) for each element X€ S, , there exists a element Y€ S such that

xNy=c, and xUy=e.

Notice that X€ A if Xx€ Sa , so there must exist a fuzzy point y, € A such
that kxy, >ce , and x@y, <es .And by Definition 3, iii) holds true.

The element y is referred to as the ‘complement of x, written X.

Thus, (S ,N,U,-,c,e) is a Boolean algebra by Huntington’s Axiomatics [5].

Theorem 2. Let A be a fuzzy set, S, the support set of A, and (S .N,U,
-,c,e ) a Boolean algebra. And let the operations - and + of the truth set
(L, -,+",0,1) of A be distributive. If for all x,y€ S, ,the following hold:
a) ua (X) - pa ND<L ua XNy
b) ua (XND+ua (WI<L HAa xuy)
c) (ua (X)) <L Ha (X),
then A may be formed into a fuzzy Boolean algebra.

Proof. Let xy ¥ys =(XxN¥)ass a0d x4 DYys =(xUY)oo- For all xg ,ys € A,we have
that X,y € Sa,a<p pa (xX), B<L ua (¥) and a - B<_ Ha (X)- pa N<L
Ha (xNy), thus (xNy)aw € A. Hence x is a fuzzy operation on A. Similarly, @
is also a fuzzy operation on A.

It is easy to check that the operations x and & are commutative and distri-
butive. Let’s write 6 for ua (e). Then a<_ Ha ()<L va (XND+pa )<,
Ha (xUR)=pa (e)=56for all x4 € A,s0 Xy Xep =(xe)u. 5 X« yand notice that
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Xag PCo =(XUC)ys o =Xy

XKoo y= (XN X) us pouasay 2 Co » and

XD X0y (XU X) ia 00+ @ia00)’ S @ua 0ot ia 60 < €5 - ,
Define ~x=Xg.o0r . Hence (A, %, @, ~,co. ,05 ) is a fuzzy Boolean algebra.

The fuzzy Boolean algebra (A ,x &, ~,c. ,eg ) given in Theorem 2 is refer-
red to as the fuzzy Boolean algebra induced by the support set S, .

Theorem 3. Let A be a fuzzy set, S, the support set of A, and (S, ,N, U,
-,c,8), (L, -,+7,0,1) tow Boolean algebras. If for all x,y€ S, , the fol-
lowing hold:

a) pa (X)) ua (I<L Ha (XNY)

b) ua (X)+tua (<L ua (xUY);

c) (Ha ())'<y Ha (X),
then the fuzzy Boolean algebra induced by S, is normal.

Proof. Since 1=pa (x)+(pa (X))’ <. ua (xUX)=na ()<, 1,we have p, (e)=1,
so the fuzzy Boolean algebra induced by S, is (A,%,@,~,c,,¢ ) by Theorem 2.

We can easily see that (A,% @, ~,c. ,e, ) is a normal fuzzy Boolean algeb-
ra, only noticing that pa (x): (Ha (X))’'=0, and pwa (X)+(da (X))’ =1 for all
X€ S, .

Theorem 4. Let A be a fuzzy set, S, the support set of A, and (SA ,N, U,
-,¢c,e), (L, -,+7,0,1) be two Boolean algebras. If

a) ua (XNY)=ua (X) - ua (¥);

b) ua (xUy)=ua (x)+tua (¥)

c) ua (X=(ua (x))’, )
then the set A* composed of all main fuzzy points in A may be formed iato a
Boolean algebra, and A®* is isomorphic to S, .

Proof. The proof of this theorem is simple and will be omitted here.

3. The elementary properties of fuzzy Boolean algebras

Theorem 5. Let (A,%, @, ~,ce ,e5 ) be a fuzzy Boolean algebra, and A® the
set composed of all main fuzzy points in A.Then, (A® ,%, @, ~,¢, &) is a Boo-
lean algebra iff the operations x and @ are closed on A" .
Proof. Sufficiency: Because x and @ are closed on A* ,they are both the oper-
ations on A* , and they are both commutative and distributive on A* .
By Definition 108, we have
i) for all x€ A® , xxeg =X, and x@cg =x;
ii) for each x€ A* , there is a fuzzy point y," € A such that
kxy, >cg , and x@y, <es .
It is easy to deduce from i) that xxe=x and x@é=x for all x€ A* . In fact,
the fuzzy points (xxeg ) and (xxé) are both with the same suppport x (see Defi-
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nition 8), and ¥ is closed on A® , so xxé=x. In the same way, we have xDc=x.

We can similarly deduce from ii) that xxy=¢c and i@ysé,writing'{ for y. Thus
for each main fuzzy polat x€ A® , there is a main fuzzy point K€ A® such that
xxi=¢ and x@%=é. |

To sum up, (A* ,% &, ~,c,e) is a Boolean algebra.

Necessity: Obvious.

Theoren 6. Lot (A, % @, ~,ce ,es ) be such a nornal fuzzy Boolean algebra that
Xa ¥Yo <Xn Xye , and Xg Dys <xn Dye whenever xy <xv and y5 <ye . Then
the following hold:

8) Xoq P(xg ¥yYs I<Xa ;

b) xy ¥(Xa DPYs I<X« ;

c) xg D(x« *Y) =Xy

d) xy ¥(Xg DY)=Xy , .
where x, and y, are generic fuzzy points in A,and y is a generic main fuzzy
point in A.

Proof. Obviously, xy @ (X« ¥ys )<Xg @D (xyg *¥),and xyq ¥(xoq Dys I<Xg *¥(x« DY).
Consequently, we only need to prove that c) and d) hold true.

For any y€ A, we have :

vDes =(yDes Yxes =(yDes Y¥(YD~Y)=yD (es ¥~y)=yD~y=es
since (A, % @, ~,ce ,es ) is a normal fuzzy Boolean algebra. Hence
Xa D(xg %) =(x« *€5 YD (Xg *¥Y¥)=xy *(eg DY) =x« ¥(yPes )=Xq X€s =Xg »

namely, c¢) holds true.

Dually, we have yxcg =c¢ , and x4 ¥(xq DY)=X« .

Theorem 7. Let (A,x% @,~,ce ,es ) be a fuzzy Boolean algebra, and S, the
support set of A. Assume that the fuzzy operations x and @ satisfy x4 ¥y, =
Zg. o sand Xg @Yy, =Wasg »where - and # are two operations on the lattice,which
is the truth set of A. Then the following hold:
a) (A,% ®,ce ,eg ) is a distributive lattice with the lower
bound ¢ and the upper bound es ;
b) x« Xys >ce , and x4 Dy, <eg iff y=X, where - is the comp-
lementary operation on the Boolean algebra S, ,
which is formed in Theorenm 1.

Proof. By Theorem I, (S ,N,U,-,c,e) is a Boolean algebra. Thus the oper-
ations x and @ satisfy
i) associative laws: x,  *¥(ys *zy )=[xN (YN Z)Jacov
HLENY)N 20 v =(Xa *Yg %2y 5
Xa Do Dzy )=[xU (YU 2) larow
=((xUYIU zlononry =(Xa DYys )D2y ;
ii) absorption laws: x4 ¥(xq Dys )=[xN (XU Y) lacoso) = Xa »
Xa D(Xa *¥yg )=[xU (XNY) lowan) =X
iii) commutative laws: known (see Definition 10);
iv) distributive laws: known (see Definition 10).



58

Hence (A, x @) is a distributive lattice {5].
We define the relation © between two fuzzy points x4 and y, in A by:
Xy ©Yy DXy XYs =X - It is easy to verify that x4 ©y, is equivaleat to
X« @Yo =ys » and then (A, S) is a partially ordered lattice [5].
For all x4 € A, Xg ¥eg =X« » and xg Dce =X« » SO Cc SX« Qes , i.e. that
(A,®) is a bounded lattice.
So we arrive at the conclusion a).
Next we verify the conclusion b). v
For all x4 € A,xq =X« Dce 2(XUC)ge £ *Xavg »a0d Xg =Xq ¥Og =(xNe)y 5 =€« 5,
Therefore, a=a+e, and a=a - &, that is, e<_ a<_ 6.
Since xNy=c, and xUy=e iff y=X, we have X4 ¥y¥s =(XNY)ao=Cas>Ce » and
Xq DYs =(xUY)m=es<es iff y=x. Hence the conclusion b) holds true.

Definition 11. Let (A,% @, ~,ce ,05 ) be a fuzzy Boolean algebra, and B a
subset of A. If (B,% @, ~,cc ,e5 ) is also a fuzzy Boolean algebra, then B
is called a fuzzy Boolean subalgebra of A. And if (B,% @®,~,cg ,e5 ) is a
normal fuzzy Boolean algebra, then B is called a normal fuzzy Boolean subal-
gebra of A.

Theorem 8. Let (A,x @,~,ce ,es ) be a fuzzy Boolean algebra,and B a subset
of A. Then B is a normal fuzzy Boolean subalgebra of A iff
a) % and @ are closed on B;
b) for each main fuzzy point X oo € B, there exists a fuzzy
point y, € B such that Xy, co¥yx =Ce » and Xy, 0c0o@Yr =€5 -

Proof. Sufficiency: Suppose that x and © are closed on B. Then ¥ and @ are
comautative and distributive on B, as BCA.And cg ,e5 belong to B from b).
Thus (B, % @,~,ce ,es ) is a normal fuzzy Boolean algebra (see Definition
10). Hence B is a normal fuzzy Boolean subalgebra of A.

Necessity: Straightforward.

4. The base of a finite fuzzy Boolean algebra

Definition 12. Let A be a fuzzy Boolean algebra, and S, the support set of
A. If S, is a finite set, then A is called a finite fuzzy Boolean algebra.

Definition 13. Let (A, % @,~,ce ,es ) be a finite fuzzy Boolean algebra. If
there exist a group of fuzzy points (fi )x ., (f2 Yagreeer (fn danof A such that
each main fuzzy point x of A may be uniquely expressed as

k=[a, x(f, ) 182 * (f2 ) 1D...®lay *¥(fn ], where a, =c or e, 1<i<n,
then the group of elements is called a base of A. ln particular,if all elements
in a base of A are main fuzzy points,then the base is called a main base of A.

Theorem 9. Let (A,% @,~,ce ,es ) be a finite fuzzy Boolean algebra,and S,
the support set of A. If A has a base B dnr Uz dowsreeor n danr then S .
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is such a n-dimension Boolean algebra that =a<n, and all base elements of S,

are in the set {f, ,fz ,....fn }.

Proof. By Theorema 1, S, may be formed into a Boolean algebra (SA ,N,U,-,
c,e). Let s, ,52 ,...,5m be the base of Sa . Then each s, , 1<i<m, may be
expressed as

$y =[84y %(f1 Ja 1D a2 %(f2 D, 1D... D lam*(fa dan 1.
Thus

sy =(ay; N, YUCag2 N2 )U...UCagn Nen ), 6]
where agy =c or e, 1<j<n.Notice that s; is a pinimal element of S, ,s0 s; Fc,
Therefore, there is 1< j<n, such that asy=e, and f; Fc in (1), i.e. that sy
may be expressed as

sy =+« Uf; U- -
Thereby, f; <s s; , where <s. is the partially ordered relation in the par-
tially ordered lattice (Sa ,<s.) determined by the Boolean algebra S, [5].
It follows from the properties of minimal elements that s, =f, . Hence, s; €
fr 12 ,....0n },i=1,2,...,m, and so n<n,noticing that s, ,5z ,...,5nm differ
from each other.

Theorem 10. Let A be a fuzzy set with two fuzzy operations x and @, S, the
support set of A,L* ={pa (X)| X€ESA ), and A® the set composed of all main
fuzzy points of A. If (A* ,% @®,~,¢,8) is a Boolean algebra, then both S,
and L* may be formed into Boolean algebra, and S, is isomorphic to A* . In
particular, if S, is finite, then the dimension of A* is equal to that of
Sa s and not less than that of L* .

Proof. For all a,p € L* ,-there are main fuzzy points X and y in A*® such
that wa (X)=a and pa (y)=B, i.e. that x4 =x, and y,; =y.Let uq =xy ¥y, ,and
Ve =Xq @Yy . Because ( A® , %, @®,~,¢,& ) is a Boolean algebra, «x and @ are
closed on A* ,so that un and v¢ are in A® .Thereby n and 6 belong to |
We define the operations a Ap, and aVVp on L* to be a AB=n,and aVVB
=9, respectively. As x and @ are two fuzzy operations on A, it follows from
Definition 9 that the valuse n and @ are uniquely determined by a and B.
Hence A and \/ are two algebra operations on L* .

For each X€ A® , there is a y in A® such that xxy=¢, and x@y=é, since
(A® ,% @, ~,¢,é) is a Boolean algebra.Let 4 pa (X)=ua (¥), Y=ua (c), and
5=ua (e). Then it is easy to check that (L* ,A,V,7,v,8) is a Boolean
algebra.

We can similarly form S, into a Boolean algebra (SA ,N,U,-c, e).

We define a one-to-one correspondence of A®* into Sa x—~%x. Then we ob-
tain at once that S, is isomorphic to A* . Hence the dimension of A* is
equal to that of S. whea S, is finite.

In the same way used in Theorem 9, we can prove that the dimension of A* is
not less than that of L* when S, is finite.

Theoren 11. Let (A, x @, ~,ce ,e5 ) be a finite fuzzy Boolean algebra,and S,
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the support s.et of A.If the fuzzy operations x and €@ satisfy that xy ¥y, =Zxg,
and xoq Dys; =Wy for all x4 ,ys € A, then A has a main base iff x and D are
closed on A* , where A* is the set composed of all main fuzzy points in A.

Proof. Necessity: Let f, ,f2 ye..,fy be a main base of A. By Theoren 9,
(Sa,N,U,-,c,e) is a n-dimension Boolean algebra,a<n,and all base elements
of S, are in the set {f, ,f2,...,fn }. Without loss of generality, we may
assume that f, ,f, ,...,fyn is the base of S, . We take four steps to prove the
necessity as following,

First, we prove that for all x€ S, , Ha ()<_ Ha X)<L Ha (e).

Since x and @ are closed on A, we have x@D&=(xU C)yn 00+ ia@ “Xurvota € A,
and x@De=(xU @)y, co+une “Cuncotma@ € A. Thus pa (X)+tpa ()<, ua (x), and
Ha ()+tia ()<, ua (e). But pa (X)L ua (X)tpa (), and pa ()<,
Ua (e)+ua (x), as the truth set L of A is a lattice.Hence ua (x)=pa (x)+
Ha (), and pp (e)=pa (e)rpa (x), i.e. Ha ()<L Ha (XI<y ua (e).

Therefor

XXC=(X N C)a votta @ =Cata > =C; - : 2
XDE=(XUC) a0 + a@ =Xita 00 =X} 3
x%€=(X N ) 4n 0ot @ =Xt 00 =X; 4
XD e=(x U @) ur 00 +uta @ =Cain (@ =€. (5)
Secondly, we prove m=n. Suppose that m<n. We can obtain from (2)—(5) that
fn =(exf YD (Exf2 ). .. D (Exfn)D(6xfy ). (6)

Obviously, f,, #c, otherwise f, can be expressed as
fo =(exf, YDExE2 ID. .. (Cxfn YD (Exfn ),
it is different from (6), and so this is contradictory to Definition 13.
[n other hand, f, can be expressed as
fn =(a; Nf, )UCaz Nfz2 J)U...UC(ap Nfp ), a3 =c or e, I<i<n )
since f, ,f, ,...,fyn is the base of S, . Let
(fn )a =(8, *f, )D(a2 ¥f2 )D... D (an *im ).
Then A<. ua (fn ), as % and @ are closed on A. Thus
fn =(fy Uty )A+uﬂﬁ) =(fn da GBfn .
(i1 ¥ D O ki YD ExEm)D. .. D (Exfny YD (oxfy ). ®)
Notice that f, #c, hence there exists j, 1<j<m, such that a; =e in (7).
Thus (8) differ from (6). This is contradictory to Definition 13. Hence m=n.
For this reason, A may only have one main base, noticing that the Boolean
algebra S, uniquely has one base.
Thirdly, we prove that
(a1 #f, YD (2 ¥z )D... By *in YEA® (9)
where a, =c or e, 1<i<n.
Let xq =(a, %f, )D(d, *f2 )D...O(an ¥fn ). Thus
x=(ay Nf, J)UCa2 N2 )U...UCay NIy ) (10)
From Definition 13, x can be expressed as
x=(b, xf, )B (b2 xf2 )D...D(by *fy ).
Thus
x=(b; Nf, YU Nf. JU... Uy NIy ) (1)
Because x is uniquely expressed by the base of S, , we have a; =b, , 1<i<n,
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in (10) and (11). Hence x4 =Xx€ A* .
Finally we prove that x and @ are closed on A®* , i.e. that xxy€ A* , and
xPy€ A* for all x,y€ A* .
In fact, for all x,y€ A* , x and y can be respectively expressed as
k=i, %2 YD (32 ¥z )D... Dy *fn ), and
»9‘(51 *il )@(bz *fz )@---@(BT\ *fn ), ag by € {c,e), I<i<n.
Thus @y-[(he ®b: Y¥is 1@[(4z @bz Ixiz 1©...O[(in ®bn Ixfn 1. Froa (3),
(5) and (3), we can easily deduce that xy€ A® .
From the properties of mininal elements of a Boolean algebra, we have f; nf;
¢, iff i=j. Thus (by xfy )wk=(by xdy xf; ), 1<i<n. Hence
kny=(&, xby ¥f, YD (dz xbz ¥fz )D...B(dn by ®xfy )
From (2),(4) and (8), we have xxy€ A* .
So the proof of necessity of this theorem is completed.
Sufficiency: Since x and €@ are closed on A* ,(A* , % @,~,c,8) is a Boo-
lean algebra by Theorem 5. Thus A* has a base, denoted fo,f2 ,...,fn .
Obviously, it is a main base of A as well.

From the proof of Theorem 11, we can see that under the conditions of this
theorem, the main base of (A, %, &®,~,ce €5 ) is the base of (A* %, ®,~, c,e),
vice versa.
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